
M A N N I N G

Timothy Samuel McNamara

Systems programming concepts
and techniques

Raw Pointer

The cousins mut T and*

*const T are the free radicals

of the pointer world. Lightning

fast, but wildly unsafe.

Powers

• Speed

• Can interact with

the outside world

Weaknesses

• Unsafe

Box<T>

Store anything in a box. Accepts

almost any type for long-term

storage. The workhorse of a

new, safe programming era.

Powers

• Store a value in

central storage

in a location

called “the heap”

Weaknesses

• Size increase

Rc<T>

The reference counted pointer, Rc<T>

is Rust's competent, yet miserly

bookkeeper. It knows who has

borrowed what and when.

Powers

• Shared access

to values

Weaknesses

• Size increase

• Runtime cost

• Not threadsafe

Cell<T>

An expert in metamorphosis,

Cell<T> confers the ability to

mutate immutable values.

Powers

• Interior mutability

Weaknesses

• Size increase

• Performance

RefCell<T>

Performs mutation on immutable

references with RefCel<T>.

Its mind-bending powers

come with some costs.

Weaknesses

• Size increase

• Runtime cost

• Lack of compile-

time guarantees

Cow<T>

Why write something down when

you only need to read it? Perhaps

you only want to make modifications.

This is the role of Cow (copy on write).

Powers

• Avoids writes

when only read

access is used

Weaknesses

• Possible size

increase

Arc<T>

Your program’s main storage system.

Vec<T> keeps your data orderly

as values are created and destroyed.

Powers

• Grows dynamically

as required

Weaknesses

• Can over

allocate size

RawVec<T>

The bedrock of Vec<T> and

other dynamically sized types.

Understands how to provide a

home for your data as needed.

Powers

• Grows dynamically

as required

• Works with the

memory allocator

to find space

Weaknesses

• Not directly

applicable from

your code

Unique<T>

Sole owner of a value,

a unique pointer is guaranteed

to possess full control.

Powers

• Base for types

such as Strings,

requiring exclusive

possession of values.

Weaknesses

• Not appropriate

for application

code directly

Arc<T>

Arc<T> is Rust’s ambassador.

It can share values across threads,

guaranteeing that these will

not interfere with each other.

Powers

• Shared access

to values

• Threadsafe

Weaknesses

• Size increase

• Runtime cost

String

Acting as a guide on how to

deal with the uncertainties of

user input, String shows us how

to build safe abstractions.

Powers

• Grows dynamically

as required

• Guarantees correct

encoding at runtime

Weaknesses

• Can over

allocate size

Shared<T>

Sharing ownership is hard.

Shared<T> makes life

a little bit easier.

Powers

• Shared ownership

• Can align memory

to T’s width, even

when empty

Weaknesses

• Not appropriate

for application

code directly

Powers

• Interior mutability

• Can be nested

within Rc and Arc,

which only accept

immutable refs

Rust in Action

Rust in Action
SYSTEMS PROGRAMMING

CONCEPTS AND TECHNIQUES

TIM MCNAMARA

MANN I NG

SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Development editor: Elesha Hyde
Technical development editor: René van den Berg

Manning Publications Co. Review editor: Mihaela Batinic
20 Baldwin Road Production editor: Deirdre S. Hiam
PO Box 761 Copy editor: Frances Buran
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Jerry Kuch
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617294556
Printed in the United States of America

www.manning.com

 To everyone aspiring to write safer software.

contents
preface xv
acknowledgments xvii
about this book xix
about the author xxii
about the cover illustration xxiii

1 Introducing Rust 1

1.1 Where is Rust used? 2
1.2 Advocating for Rust at work 3
1.3 A taste of the language 4

Cheating your way to “Hello, world!” 5 ■ Your first Rust
program 7

1.4 Downloading the book’s source code 8
1.5 What does Rust look and feel like? 8
1.6 What is Rust? 11

Goal of Rust: Safety 12 ■ Goal of Rust: Productivity 16
Goal of Rust: Control 18

1.7 Rust’s big features 19
Performance 19 ■ Concurrency 20 ■ Memory efficiency 20
vii

CONTENTSviii
1.8 Downsides of Rust 20
Cyclic data structures 20 ■ Compile times 20 ■ Strictness 21
Size of the language 21 ■ Hype 21

1.9 TLS security case studies 21
Heartbleed 21 ■ Goto fail; 22

1.10 Where does Rust fit best? 23
Command-line utilities 23 ■ Data processing 24 ■ Extending
applications 24 ■ Resource-constrained environments 24
Server-side applications 25 ■ Desktop applications 25
Desktop 25 ■ Mobile 25 ■ Web 26 ■ Systems
programming 26

1.11 Rust’s hidden feature: Its community 26
1.12 Rust phrase book 26

PART 1 RUST LANGUAGE DISTINCTIVES29

2 Language foundations 31

2.1 Creating a running program 33
Compiling single files with rustc 33 ■ Compiling Rust projects
with cargo 33

2.2 A glance at Rust’s syntax 34
Defining variables and calling functions 35

2.3 Numbers 36
Integers and decimal (floating-point) numbers 36 ■ Integers
with base 2, base 8, and base 16 notation 37 ■ Comparing
numbers 38 ■ Rational, complex numbers, and other numeric
types 43

2.4 Flow control 45
For: The central pillar of iteration 45 ■ Continue: Skipping the rest
of the current iteration 47 ■ While: Looping until a condition
changes its state 47 ■ Loop: The basis for Rust’s looping
constructs 48 ■ Break: Aborting a loop 48 ■ If, if else, and
else: Conditional branching 49 ■ Match: Type-aware pattern
matching 51

2.5 Defining functions 52
2.6 Using references 53
2.7 Project: Rendering the Mandelbrot set 54

CONTENTS ix
2.8 Advanced function definitions 56
Explicit lifetime annotations 56 ■ Generic functions 58

2.9 Creating grep-lite 60
2.10 Making lists of things with arrays, slices, and vectors 63

Arrays 64 ■ Slices 65 ■ Vectors 66

2.11 Including third-party code 67
Adding support for regular expressions 68 ■ Generating the third-
party crate documentation locally 69 ■ Managing Rust toolchains
with rustup 70

2.12 Supporting command-line arguments 70
2.13 Reading from files 72
2.14 Reading from stdin 74

3 Compound data types 77
3.1 Using plain functions to experiment with an API 78
3.2 Modeling files with struct 80
3.3 Adding methods to a struct with impl 84

Simplifying object creation by implementing new() 84

3.4 Returning errors 87
Modifying a known global variable 87 ■ Making use of the Result
return type 92

3.5 Defining and making use of an enum 95
Using an enum to manage internal state 96

3.6 Defining common behavior with traits 98
Creating a Read trait 98 ■ Implementing std::fmt::Display for
your own types 99

3.7 Exposing your types to the world 102
Protecting private data 102

3.8 Creating inline documentation for your projects 103
Using rustdoc to render docs for a single source file 104
Using cargo to render docs for a crate and its dependencies 104

4 Lifetimes, ownership, and borrowing 107
4.1 Implementing a mock CubeSat ground station 108

Encountering our first lifetime issue 110 ■ Special behavior of
primitive types 112

CONTENTSx
4.2 Guide to the figures in this chapter 114
4.3 What is an owner? Does it have any responsibilities? 115
4.4 How ownership moves 115
4.5 Resolving ownership issues 118

Use references where full ownership is not required 119
Use fewer long-lived values 123 ■ Duplicate the value 128
Wrap data within specialty types 131

PART 2 DEMYSTIFYING SYSTEMS PROGRAMMING135

5 Data in depth 137

5.1 Bit patterns and types 137
5.2 Life of an integer 139

Understanding endianness 142

5.3 Representing decimal numbers 143
5.4 Floating-point numbers 144

Looking inside an f32 144 ■ Isolating the sign bit 146
Isolating the exponent 146 ■ Isolate the mantissa 148
Dissecting a floating-point number 150

5.5 Fixed-point number formats 152
5.6 Generating random probabilities from random

bytes 157
5.7 Implementing a CPU to establish that functions

are also data 158
CPU RIA/1: The Adder 159 ■ Full code listing for CPU RIA/1:
The Adder 163 ■ CPU RIA/2: The Multiplier 164 ■ CPU
RIA/3: The Caller 167 ■ CPU 4: Adding the rest 173

6 Memory 175

6.1 Pointers 176
6.2 Exploring Rust’s reference and pointer types 178

Raw pointers in Rust 183 ■ Rust’s pointer ecosystem 185
Smart pointer building blocks 186

6.3 Providing programs with memory for their data 187
The stack 188 ■ The heap 190 ■ What is dynamic memory
allocation? 194 ■ Analyzing the impact of dynamic memory
allocation 199

CONTENTS xi
6.4 Virtual memory 202
Background 202 ■ Step 1: Having a process scan its own
memory 203 ■ Translating virtual addresses to physical
addresses 205 ■ Step 2: Working with the OS to scan an
address space 208 ■ Step 3: Reading from and writing to
process memory 211

7 Files and storage 212

7.1 What is a file format? 213
7.2 Creating your own file formats for data storage 214

Writing data to disk with serde and the bincode format 214

7.3 Implementing a hexdump clone 217
7.4 File operations in Rust 219

Opening a file in Rust and controlling its file mode 219
Interacting with the filesystem in a type-safe manner with
std::fs::Path 220

7.5 Implementing a key-value store with a log-structured,
append-only storage architecture 222
The key-value model 222 ■ Introducing actionkv v1: An
in-memory key-value store with a command-line interface 222

7.6 Actionkv v1: The front-end code 224
Tailoring what is compiled with conditional compilation 226

7.7 Understanding the core of actionkv: The libactionkv
crate 228
Initializing the ActionKV struct 228 ■ Processing an individual
record 230 ■ Writing multi-byte binary data to disk in a
guaranteed byte order 232 ■ Validating I/O errors with
checksums 234 ■ Inserting a new key-value pair into an
existing database 236 ■ The full code listing for actionkv 237
Working with keys and values with HashMap and BTreeMap 241
Creating a HashMap and populating it with values 243
Retrieving values from HashMap and BTreeMap 244 ■ How
to decide between HashMap and BTreeMap 245 ■ Adding a
database index to actionkv v2.0 246

8 Networking 251

8.1 All of networking in seven paragraphs 252
8.2 Generating an HTTP GET request with reqwest 254

CONTENTSxii
8.3 Trait objects 256
What do trait objects enable? 256 ■ What is a trait object? 256
Creating a tiny role-playing game: The rpg project 257

8.4 TCP 260
What is a port number? 261 ■ Converting a hostname to
an IP address 261

8.5 Ergonomic error handling for libraries 268
Issue: Unable to return multiple error types 269 ■ Wrapping
downstream errors by defining our own error type 272
Cheating with unwrap() and expect() 277

8.6 MAC addresses 277
Generating MAC addresses 279

8.7 Implementing state machines with Rust’s enums 281
8.8 Raw TCP 282
8.9 Creating a virtual networking device 282

8.10 “Raw” HTTP 283

9 Time and timekeeping 293

9.1 Background 294
9.2 Sources of time 296
9.3 Definitions 296
9.4 Encoding time 297

Representing time zones 298

9.5 clock v0.1.0: Teaching an application how to tell
the time 298

9.6 clock v0.1.1: Formatting timestamps to comply with ISO
8601 and email standards 299
Refactoring the clock v0.1.0 code to support a wider architecture 300
Formatting the time 301 ■ Providing a full command-line
interface 301 ■ clock v0.1.1: Full project 303

9.7 clock v0.1.2: Setting the time 305
Common behavior 306 ■ Setting the time for operating systems that
use libc 306 ■ Setting the time on MS Windows 308 ■ clock
v0.1.2: The full code listing 310

9.8 Improving error handling 313

CONTENTS xiii
9.9 clock v0.1.3: Resolving differences between clocks with the
Network Time Protocol (NTP) 314
Sending NTP requests and interpreting responses 314 ■ Adjusting
the local time as a result of the server’s response 316 ■ Converting
between time representations that use different precisions and
epochs 318 ■ clock v0.1.3: The full code listing 319

10 Processes, threads, and containers 328
10.1 Anonymous functions 329
10.2 Spawning threads 330

Introduction to closures 330 ■ Spawning a thread 331
Effect of spawning a few threads 331 ■ Effect of spawning
many threads 333 ■ Reproducing the results 335 ■ Shared
variables 338

10.3 Differences between closures and functions 340
10.4 Procedurally generated avatars from a multithreaded

parser and code generator 341
How to run render-hex and its intended output 342 ■ Single-
threaded render-hex overview 342 ■ Spawning a thread per
logical task 351 ■ Using a thread pool and task queue 353

10.5 Concurrency and task virtualization 360
Threads 362 ■ What is a context switch? 362 ■ Processes 363
WebAssembly 363 ■ Containers 363 ■ Why use an operating
system (OS) at all? 363

11 Kernel 365
11.1 A fledgling operating system (FledgeOS) 365

Setting up a development environment for developing an
OS kernel 366 ■ Verifying the development environment 367

11.2 Fledgeos-0: Getting something working 368
First boot 368 ■ Compilation instructions 370 ■ Source code
listings 370 ■ Panic handling 374 ■ Writing to the screen with
VGA-compatible text mode 375 ■ _start(): The main() function for
FledgeOS 377

11.3 fledgeos-1: Avoiding a busy loop 377
Being power conscious by interacting with the CPU directly 377
fledgeos-1 source code 378

11.4 fledgeos-2: Custom exception handling 379
Handling exceptions properly, almost 379 ■ fledgeos-2 source
code 380

CONTENTSxiv
11.5 fledgeos-3: Text output 381
Writing colored text to the screen 381 ■ Controlling the in-memory
representation of enums 382 ■ Why use enums? 382 ■ Creating
a type that can print to the VGA frame buffer 382 ■ Printing to the
screen 383 ■ fledgeos-3 source code 383

11.6 fledgeos-4: Custom panic handling 385
Implementing a panic handler that reports the error to the user 385
Reimplementing panic() by making use of core::fmt::Write 385
Implementing core::fmt::Write 386 ■ fledge-4 source code 387

12 Signals, interrupts, and exceptions 390
12.1 Glossary 391

Signals vs. interrupts 391

12.2 How interrupts affect applications 393
12.3 Software interrupts 395
12.4 Hardware interrupts 395
12.5 Signal handling 395

Default behavior 395 ■ Suspend and resume a program’s
operation 397 ■ Listing all signals supported by the OS 399

12.6 Handling signals with custom actions 400
Global variables in Rust 401 ■ Using a global variable to indicate
that shutdown has been initiated 402

12.7 Sending application-defined signals 405
Understanding function pointers and their syntax 405

12.8 Ignoring signals 407
12.9 Shutting down from deeply nested call stacks 408

Introducing the sjlj project 409 ■ Setting up intrinsics in a
program 409 ■ Casting a pointer to another type 412
Compiling the sjlj project 413 ■ sjlj project source code 414

12.10 A note on applying these techniques to platforms without
signals 417

12.11 Revising exceptions 417

index 419

preface
No one knows whether reading a technical book is going to be worth the effort. These
books can be expensive, dull, and poorly written. Even worse, there’s a good chance
that you won’t learn anything. Luckily, this book is written by someone who under-
stands that.

 This book’s first aim is to teach you Rust. Rust in Action presents large, working
projects to promote your learning. Over the course of the book, you’ll write a data-
base, a CPU emulator, an operating system kernel, and several other interesting proj-
ects. You’ll even dabble with generative art. Each project is designed to enable you to
explore the Rust programming language at your own pace. For those readers who
know little Rust, there are many opportunities to expand the projects in whatever
direction you choose.

 There is more to learning a programming language than studying its syntax and
semantics, however. You are also joining a community. Unfortunately, established
communities can create invisible barriers for new entrants because of their shared
knowledge, jargon, and practices.

 One such barrier for many new Rust programmers is the concept of systems pro-
gramming. Lots of programmers come to Rust without a background in that area.
To compensate for this, Rust in Action has a second aim—to teach you systems pro-
gramming. And, among other topics, you’ll learn about how memory, digital time-
keeping, and device drivers work in the book’s 12 chapters. I hope this enables you
to feel more comfortable when becoming a member of the Rust community. And we
need you!
xv

PREFACExvi
 Our societies depend on software, yet critical security holes are accepted as normal
and, perhaps, inevitable. Rust demonstrates that these are neither. Moreover, our
computers are filled with bloated, energy-intensive applications. Rust provides a viable
alternative for developing software that is less demanding on these finite resources.

 Rust in Action is about empowerment. This book’s ultimate objective is to convince
you of that. Rust is not reserved for a select group of experts. It is a tool that’s available
for everyone. Well done for making it this far through your learning journey; it’s my
pleasure to take you a few more steps.

acknowledgments
Thank you to Katie for preventing me from collapsing and for picking me up when I
fell down anyway. Thanks also to Florence and Octavia for your hugs and smiles, even
when Dad was unable to play because he was writing.

 I’m indebted to so many that it feels unfair to list only a select few. There are many
members of the Rust community who have supported the book’s development. Thou-
sands of readers submitted corrections, questions, and suggestions via the liveBook
during the book’s development. Every contribution has helped me refine the text.
Thank you.

 I’m especially grateful to a small number of readers, many of whom have become
friends. To Aï Maiga, Ana Hobden, Andrew Meredith, Andréy Lesnikóv, Andy Grove,
Arturo J. Pérez, Bruce Mitchener, Cecile Tonglet, Daniel Carosone, Eric Ridge, Esteban
Kuber, Florian Gilcher, Ian Battersby, Jane Lusby, Javier Viola, Jonathan Turner,
Lachezar Lechev, Luciano Mammino, Luke Jones, Natalie Bloomfield, Oleksandr
Kaleniuk, Olivia Ifrim, Paul Faria, Paul J. Symonds, Philipp Gniewosz, Rod Elias,
Stephen Oates, Steve Klabnik, Tannr Allard, Thomas Lockney, and William Brown;
interacting with you over the last four years has been a special privilege.

 To the book’s reviewers, I extend my warm thanks to Afshin Mehrabani, Alastair
Smith, Bryce Darling, Christoffer Fink, Christopher Haupt, Damian Esteban, Federico
Hernandez, Geert Van Laethem, Jeff Lim, Johan Liseborn, Josh Cohen, Konark Modi,
Marc Cooper, Morgan Nelson, Ramnivas Laddad, Riccardo Moschetti, Sanket Naik,
Sumant Tambe, Tim van Deurzen, Tom Barber, Wade Johnson, William Brown, Wil-
liam Wheeler, and Yves Dorfsman. All of your comments were read. Many of the
xvii

ACKNOWLEDGMENTSxviii
improvements in the latter stages of the book’s development are owed to your
thoughtful feedback.

 Two team members at Manning deserve special credit for their patience, profes-
sionalism, and positivity: Elesha Hyde and Frances Buran have skillfully guided the
book through many, many drafts.

 Thank you also to the rest of the development editors, including Bert Bates, Jerry
Kuch, Mihaela Batinić, Rebecca Rinehart, René van den Berg, and Tim van Deurzen.
My thanks also extends to the production editors, including Benjamin Berg, Deirdre
Hiam, Jennifer Houle, and Paul Wells.

 Rust in Action had 16 releases during its MEAP process, and these would have been
impossible without the support of many. Thank you to Aleksandar Dragosavljević, Ana
Romac, Eleonor Gardner, Ivan Martinović, Lori Weidert, Marko Rajkovic, Matko
Hrvatin, Mehmed Pasic, Melissa Ice, Mihaela Batinic, Owen Roberts, Radmila Ercegovac,
and Rejhana Markanovic.

 Thanks also to the members of the marketing team, including Branko Latincic,
Candace Gillhoolley, Cody Tankersley, Lucas Weber, and Stjepan Jureković. You’ve
been a tremendous source of encouragement for me.

 The wider Manning team has also been very responsive and helpful. To Aira Dučić,
Andrew Waldron, Barbara Mirecki, Branko Latincic, Breckyn Ely, Christopher
Kaufmann, Dennis Dalinnik, Erin Twohey, Ian Hough, Josip Maras, Julia Quinn, Lana
Klasic, Linda Kotlyarsky, Lori Kehrwald, and Melody Dolab, thank you for your assis-
tance during the book’s development. And to Mike Stephens, thanks for kicking this
whole life-changing process off. You warned me that it would be hard. You were right.

about this book
Rust in Action is primarily intended for people who may have explored Rust’s free
material online, but who then have asked themselves, “What’s next?” This book con-
tains dozens of examples that are interesting and can be extended as creativity and
time allow. Those examples allow the book’s 12 chapters to cover a productive subset
of Rust and many of the ecosystem’s most important third-party libraries.

 The code examples emphasize accessiblity to beginners over elegant, idiomatic
Rust. If you are already a knowledgeable Rust programmer, you may find yourself dis-
agreeing with some style decisions in the examples. I hope that you will tolerate this
for the sake of learners.

 Rust in Action is not intended as a comprehensive reference text book. There are
parts of the languages and standard library that have been omitted. Typically, these
are highly specialized and deserve specific treatment. Instead, this book aims to pro-
vide readers with enough basic knowledge and confidence to learn specialized topics
when necessary. Rust in Action is also unique from the point of view of systems pro-
gramming books as almost every example works on Microsoft Windows.

Who should read this book
Anyone who is interested in Rust, who learns by applying practical examples, or who is
intimidated by the fact that Rust is a systems programming language will enjoy Rust in
Action. Readers with prior programming experience will benefit most as some com-
puter programming concepts are assumed.
xix

ABOUT THIS BOOKxx
How this book is organized: A roadmap
Rust in Action has two parts. The first introduces Rust’s syntax and some of its distinc-
tive characteristics. The second part applies the knowledge gained in part one to sev-
eral projects. In each chapter, one or two new Rust concepts are introduced. That
said, part 1 provides a quick-fire introduction to Rust:

■ Chapter 1, “Introducing Rust,” explains why Rust exists and how to get started
programming with it.

■ Chapter 2, “Language foundations,” provides a solid base of Rust syntax. Exam-
ples include a Mandelbrot set renderer and a grep clone.

■ Chapter 3, “Compound data types,” explains how to compose Rust data types
and its error-handling facilities.

■ Chapter 4, “Lifetimes, ownership, and borrowing,” discusses the mechanisms
for ensuring that accessing data is always valid.

Part 2 applies Rust to introductory systems programming areas:

■ Chapter 5, “Data in Depth,” covers how information is represented in digital
computers with a special emphasis on how numbers are approximated. Exam-
ples include a bespoke number format and a CPU emulator.

■ Chapter 6, “Memory,” explains the terms references, pointers, virtual mem-
ory, stack, and heap. Examples include a memory scanner and a generative
art project.

■ Chapter 7, “Files and storage,” explains the process for storing data struc-
tures into storage devices. Examples include a hex dump clone and a work-
ing database.

■ Chapter 8, “Networking,” provides an explanation of how computers communi-
cate by reimplementing HTTP multiple times, stripping away a layer of abstrac-
tion each time.

■ Chapter 9, “Time and timekeeping,” explores the process for keeping track of
time within a digital computer. Examples include a working NTP client.

■ Chapter 10, “Processes, threads, and containers,” explains processes, threads,
and related abstractions. Examples include a turtle graphics application and a
parallel parser.

■ Chapter 11, “Kernel,” describes the role of the operating system and how com-
puters boot up. Examples include compiling your own bootloader and an oper-
ating system kernel.

■ Chapter 12, “Signals, interrupts, and exceptions,” explains how the external
world communicates with the CPU and operating systems.

The book is intended to be read linearly. Latter chapters assume knowledge taught in
earlier ones. However, projects from each chapter are standalone. Therefore, you are
welcome to jump backward and forward if there are topics that you would like to
cover.

ABOUT THIS BOOK xxi
About the code
The code examples in Rust in Action are written with the 2018 edition of Rust and have
been tested with Windows and Ubuntu Linux. No special software is required outside
of a working Rust installation. Installation instructions are provided in chapter 2.

 This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font, like this, to separate it from ordinary text. Sometimes code is also in bold to
highlight code that has changed from the previous steps in the chapter, such as when
a new feature is added to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

liveBook discussion forum
Purchase of Rust in Action includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users:

■ To access the forum, go to https://livebook.manning.com/book/rust-in-action/
welcome/v-16/.

■ You can also learn more about Manning’s forums and the rules of conduct at
this location: https://livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the author some challenging questions lest his interest stray! The forum
and the archives of previous discussions will be accessible from the publisher’s website
as long as the book is in print.

Other online resources
Tim can be found on social media as @timClicks. His primary channels are Twitter
(https://twitter.com/timclicks), YouTube (https://youtube.com/c/timclicks), and
Twitch (https://twitch.tv/timclicks). You are also welcome to join his Discord server at
https://discord.gg/vZBX2bDa7W.

https://livebook.manning.com/book/rust-in-action/welcome/v-16/
https://livebook.manning.com/book/rust-in-action/welcome/v-16/
https://livebook.manning.com/book/rust-in-action/welcome/v-16/
https://livebook.manning.com/#!/discussion
https://twitter.com/timclicks
https://youtube.com/c/timclicks
https://twitch.tv/timclicks
https://discord.gg/vZBX2bDa7W

about the author
TIM MCNAMARA learned programming to assist with humanitarian relief projects
around the world from his home in New Zealand. Over the last 15 years, Tim has
become an expert in text mining, natural language processing, and data engineering.
He is the organizer of Rust Wellington and hosts regular Rust programming tutorials
in person and online via Twitch and YouTube.
xxii

about the cover illustration
The figure on the cover of Rust in Action is captioned “Le maitre de chausson” or “The
boxer.” The illustration is taken from a collection of works by many artists, edited by
Louis Curmer and published in Paris in 1841. The title of the collection is LesFrançais
peints par eux-mêmes, which translates as The French People Painted by Themselves. Each
illustration is finely drawn and colored by hand, and the rich variety of drawing in the
collection reminds us vividly of how culturally apart the world’s regions, towns, villages,
and neighborhoods were just 200 years ago. Isolated from each other, people spoke
different dialects and languages. In the streets or in the countryside, it was easy to
identify where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
pictures from collections such as this one.
xxiii

Introducing Rust
Welcome to Rust—the empowering programming language. Once you scratch its
surface, you will not only find a programming language with unparalleled speed
and safety, but one that is enjoyable enough to use every day.

 When you begin to program in Rust, it’s likely that you will want to continue to
do so. And this book, Rust in Action, will build your confidence as a Rust program-
mer. But it will not teach you how to program from the beginning. This book is
intended to be read by people who are considering Rust as their next language and
for those who enjoy implementing practical working examples. Here is a list of
some of the larger examples this book includes:

 Mandelbrot set renderer
 A grep clone

This chapter covers
 Introducing Rust’s features and goals

 Exposing Rust’s syntax

 Discussing where to use Rust and when to
avoid it

 Building your first Rust program

 Explaining how Rust compares to object-oriented
and wider languages
1

2 CHAPTER 1 Introducing Rust
 CPU emulator
 Generative art
 A database
 HTTP, NTP, and hexdump clients
 LOGO language interpreter
 Operating system kernel

As you may gather from scanning through that list, reading this book will teach you
more than just Rust. It also introduces you to systems programming and low-level program-
ming. As you work through Rust in Action, you’ll learn about the role of an operating
system (OS), how a CPU works, how computers keep time, what pointers are, and
what a data type is. You will gain an understanding of how the computer’s internal sys-
tems interoperate. Learning more than syntax, you will also see why Rust was created
and the challenges that it addresses.

1.1 Where is Rust used?
Rust has won the “most loved programming language” award in Stack Overflow’s
annual developer survey every year in 2016-2020. Perhaps that’s why large technology
leaders such as the following have adopted Rust:

 Amazon Web Services (AWS) has used Rust since 2017 for its serverless comput-
ing offerings, AWS Lambda and AWS Fargate. With that, Rust has gained fur-
ther inroads. The company has written the Bottlerocket OS and the AWS Nitro
System to deliver its Elastic Compute Cloud (EC2) service.1

 Cloudflare develops many of its services, including its public DNS, serverless
computing, and packet inspection offerings with Rust.2

 Dropbox rebuilt its backend warehouse, which manages exabytes of storage,
with Rust.3

 Google develops parts of Android, such as its Bluetooth module, with Rust. Rust
is also used for the crosvm component of Chrome OS and plays an important
role in Google’s new operating system, Fuchsia.4

 Facebook uses Rust to power Facebook’s web, mobile, and API services, as well
as parts of HHVM, the HipHop virtual machine used by the Hack programming
language.5

 Microsoft writes components of its Azure platform including a security daemon
for its Internet of Things (IoT) service in Rust.6

1 See “How our AWS Rust team will contribute to Rust’s future successes,” http://mng.bz/BR4J.
2 See “Rust at Cloudflare,” https://news.ycombinator.com/item?id=17077358.
3 See “The Epic Story of Dropbox’s Exodus From the Amazon Cloud Empire,” http://mng.bz/d45Q.
4 See “Google joins the Rust Foundation,” http://mng.bz/ryOX.
5 See “HHVM 4.20.0 and 4.20.1,” https://hhvm.com/blog/2019/08/27/hhvm-4.20.0.html.
6 See https://github.com/Azure/iotedge/tree/master/edgelet.

http://mng.bz/BR4J
https://news.ycombinator.com/item?id=17077358
http://mng.bz/d45Q
http://mng.bz/ryOX
https://hhvm.com/blog/2019/08/27/hhvm-4.20.0.html
https://github.com/Azure/iotedge/tree/master/edgelet

3Advocating for Rust at work
 Mozilla uses Rust to enhance the Firefox web browser, which contains 15 mil-
lion lines of code. Mozilla’s first two Rust-in-Firefox projects, its MP4 metadata
parser and text encoder/decoder, led to overall performance and stability
improvements.

 GitHub’s npm, Inc., uses Rust to deliver “upwards of 1.3 billion package down-
loads per day.”7

 Oracle developed a container runtime with Rust to overcome problems with
the Go reference implementation.8

 Samsung, via its subsidiary SmartThings, uses Rust in its Hub, which is the firm-
ware backend for its Internet of Things (IoT) service.

Rust is also productive enough for fast-moving startups to deploy it. Here are a few
examples:

 Sourcegraph uses Rust to serve syntax highlighting across all of its languages.9

 Figma employs Rust in the performance-critical components of its multi-player
server.10

 Parity develops its client to the Ethereum blockchain with Rust.11

1.2 Advocating for Rust at work
What is it like to advocate for Rust at work? After overcoming the initial hurdle, it
tends to go well. A 2017 discussion, reprinted below, provides a nice anecdote. One
member of Google’s Chrome OS team discusses what it was like to introduce the lan-
guage to the project:12

indy on Sept 27, 2017
Is Rust an officially sanctioned language at Google?

 zaxcellent on Sept 27, 2017
 Author here: Rust is not officially sanctioned at Google, but there are
 pockets of folks using it here. The trick with using Rust in this
 component was convincing my coworkers that no other language was right
 for job, which I believe to be the case in this instance.

 That being said, there was a ton of work getting Rust to play nice
 within the Chrome OS build environment. The Rust folks have been super
 helpful in answering my questions though.

 ekidd on Sept 27, 2017
 > The trick with using Rust in this component was convincing my

7 See “Rust Case Study: Community makes Rust an easy choice for npm,” http://mng.bz/xm9B.
8 See “Building a Container Runtime in Rust,” http://mng.bz/d40Q.
9 See “HTTP code syntax highlighting server written in Rust,” https://github.com/sourcegraph/syntect_server.
10 See “Rust in Production at Figma,” https://www.figma.com/blog/rust-in-production-at-figma/.
11 See “The fast, light, and robust EVM and WASM client,” https://github.com/paritytech/parity-ethereum.
12 See “Chrome OS KVM—A component written in Rust,” https://news.ycombinator.com/item?id=15346557.

http://mng.bz/xm9B
http://mng.bz/d40Q
https://github.com/sourcegraph/syntect_server
https://www.figma.com/blog/rust-in-production-at-figma/
https://github.com/paritytech/parity-ethereum
https://news.ycombinator.com/item?id=15346557

4 CHAPTER 1 Introducing Rust
 > coworkers that no other language was right for job, which I believe
 > to be the case in this instance.

 I ran into a similar use case in one of my own projects—a vobsub
 subtitle decoder, which parses complicated binary data, and which I
 someday want to run as web service. So obviously, I want to ensure
 that there are no vulnerabilities in my code.

 I wrote the code in Rust, and then I used 'cargo fuzz' to try and
 find vulnerabilities. After running a billion(!) fuzz iterations, I
 found 5 bugs (see the 'vobsub' section of the trophy case for a list
 https:/ /github.com/rust-fuzz/trophy-case).

 Happily, not _one_ of those bugs could actually be escalated into an
 actual exploit. In each case, Rust's various runtime checks
 successfully caught the problem and turned it into a controlled panic.
 (In practice, this would restart the web server cleanly.)

 So my takeaway from this was that whenever I want a language (1) with
 no GC, but (2) which I can trust in a security-critical context, Rust
 is an excellent choice. The fact that I can statically link Linux
 binaries (like with Go) is a nice plus.

 Manishearth on Sept 27, 2017
 > Happily, not one of those bugs could actually be escalated into
 > an actual exploit. In each case, Rust's various runtime checks
 > successfully caught the problem and turned it into a controlled
 > panic.

 This has been more or less our experience with fuzzing rust code in
 firefox too, fwiw. Fuzzing found a lot of panics (and debug
 assertions / "safe" overflow assertions). In one case it actually
 found a bug that had been under the radar in the analogous Gecko
 code for around a decade.

From this excerpt, we can see that language adoption has been “bottom up” by engi-
neers looking to overcome technical challenges in relatively small projects. Experi-
ence gained from these successes is then used as evidence to justify undertaking more
ambitious work.

 In the time since late 2017, Rust has continued to mature and strengthen. It has
become an accepted part of Google’s technology landscape, and is now an officially
sanctioned language within the Android and Fuchsia operating systems.

1.3 A taste of the language
This section gives you a chance to experience Rust firsthand. It demonstrates how to
use the compiler and then moves on to writing a quick program. We tackle full proj-
ects in later chapters.

NOTE To install Rust, use the official installers provided at https://rustup.rs/.

https://rustup.rs/

5A taste of the language
1.3.1 Cheating your way to “Hello, world!”

The first thing that most programmers do when they reach for a new programming
language is to learn how to print “Hello, world!” to the console. You’ll do that too, but
with flair. You’ll verify that everything is in working order before you encounter annoy-
ing syntax errors.

 If you use Windows, open the Rust command prompt that is available in the Start
menu after installing Rust. Then execute this command:

C:\> cd %TMP%

If you are running Linux or macOS, open a Terminal window. Once open, enter the
following:

$ cd $TMP

From this point forward, the commands for all operating systems should be the same.
If you installed Rust correctly, the following three commands will display “Hello,
world!” on the screen (as well as a bunch of other output):

$ cargo new hello
$ cd hello
$ cargo run

Here is an example of what the entire session looks like when running cmd.exe on MS
Windows:

C:\> cd %TMP%

C:\Users\Tim\AppData\Local\Temp\> cargo new hello
 Created binary (application) `hello` project

C:\Users\Tim\AppData\Local\Temp\> cd hello

C:\Users\Tim\AppData\Local\Temp\hello\> cargo run
 Compiling hello v0.1.0 (file:/ / /C:/Users/Tim/AppData/Local/Temp/hello)
 Finished dev [unoptimized + debuginfo] target(s) in 0.32s
 Running `target\debug\hello.exe`
Hello, world!

And on Linux or macOS, your console would look like this:

$ cd $TMP

$ cargo new hello
 Created binary (application) `hello` package

$ cd hello

$ cargo run
 Compiling hello v0.1.0 (/tmp/hello)

6 CHAPTER 1 Introducing Rust
 Finished dev [unoptimized + debuginfo] target(s) in 0.26s
 Running `target/debug/hello`
Hello, world!

If you have made it this far, fantastic! You have run your first Rust code without need-
ing to write any Rust. Let’s take a look at what just happened.

 Rust’s cargo tool provides both a build system and a package manager. That means
cargo knows how to convert your Rust code into executable binaries and also can
manage the process of downloading and compiling the project’s dependencies.

 cargo new creates a project for you that follows a standard template. The tree
command can reveal the default project structure and the files that are created after
issuing cargo new:

$ tree hello
hello
├── Cargo.toml
└── src
 └── main.rs

1 directory, 2 files

All Rust projects created with cargo have the same structure. In the base directory, a
file called Cargo.toml describes the project’s metadata, such as the project’s name, its
version, and its dependencies. Source code appears in the src directory. Rust source
code files use the .rs filename extension. To view the files that cargo new creates, use
the tree command.

 The next command that you executed was cargo run. This line is much simpler to
grasp, but cargo actually did much more work than you realized. You asked cargo to
run the project. As there was nothing to actually run when you invoked the command,
it decided to compile the code in debug mode on your behalf to provide maximal
error information. As it happens, the src/main.rs file always includes a “Hello, world!”
stub. The result of that compilation was a file called hello (or hello.exe). The hello
file was executed, and the result printed to your screen.

 Executing cargo run has also added new files to the project. We now have a
Cargo.lock file in the base of our project and a target/ directory. Both that file and
the directory are managed by cargo. Because these are artifacts of the compilation
process, we won’t need to touch these. Cargo.lock is a file that specifies the exact ver-
sion numbers of all the dependencies so that future builds are reliably built the same
way until Cargo.toml is modified.

 Running tree again reveals the new structure created by invoking cargo run to
compile the hello project:

$ tree --dirsfirst hello
hello
├── src
│ └── main.rs

7A taste of the language

li
use s

bra
├── target
│ └── debug
│ ├── build
│ ├── deps
│ ├── examples
│ ├── native
│ └── hello
├── Cargo.lock
└── Cargo.toml

For getting things up and running, well done! Now that we’ve cheated our way to
“Hello, World!”, let’s get there via the long way.

1.3.2 Your first Rust program

For our first program, we want to write something that outputs the following text in
multiple languages:

Hello, world!
Grüß Gott!

ハロー・ワールド

You have probably seen the first line in your travels. The other two are there to high-
light a few of Rust’s features: easy iteration and built-in support for Unicode. For this
program, we’ll use cargo to create it as before. Here are the steps to follow:

1 Open a console prompt.
2 Run cd %TMP% on MS Windows; otherwise cd $TMP.
3 Run cargo new hello2 to create a new project.
4 Run cd hello2 to move into the project’s root directory.
5 Open the file src/main.rs in a text editor.
6 Replace the text in that file with the text in listing 1.1.

The code for the following listing is in the source code repository. Open ch1/ch1-
hello2/src/hello2.rs.

 1 fn greet_world() {
 2 println!("Hello, world!");
 3 let southern_germany = "Grüß Gott!";
 4 let japan = "ハロー・ワールド";
 5 let regions = [southern_germany, japan];
 6 for region in regions.iter() {
 7 println!("{}", ®ion);
 8 }
 9 }

Listing 1.1 “Hello World!” in three languages

The exclamation mark indicates the use of
a macro, which we’ll discuss shortly.

Assignment in Rust, more
properly called variable
binding, uses the let keyword.

Unicode support is
provided out of the box.

Array
terals
quare
ckets.

Many types can have an iter()
method to return an iterator.

The ampersand “borrows”
region for read-only access.

8 CHAPTER 1 Introducing Rust
10
11 fn main() {
12 greet_world();
13 }

Now that src/main.rs is updated, execute cargo run from the hello2/ directory. You
should see three greetings appear after some output generated from cargo itself:

$ cargo run
 Compiling hello2 v0.1.0 (/path/to/ch1/ch1-hello2)
 Finished dev [unoptimized + debuginfo] target(s) in 0.95s
 Running `target/debug/hello2`
Hello, world!
Grüß Gott!

ハロー・ワールド

Let’s take a few moments to touch on some of the interesting elements of Rust from
listing 1.2.

 One of the first things that you are likely to notice is that strings in Rust are able to
include a wide range of characters. Strings are guaranteed to be encoded as UTF-8.
This means that you can use non-English languages with relative ease.

 The one character that might look out of place is the exclamation mark after
println. If you have programmed in Ruby, you may be used to thinking that it is used
to signal a destructive operation. In Rust, it signals the use of a macro. Macros can be
thought of as fancy functions for now. These offer the ability to avoid boilerplate code.
In the case of println!, there is a lot of type detection going on under the hood so
that arbitrary data types can be printed to the screen.

1.4 Downloading the book’s source code
In order to follow along with the examples in this book, you might want to access the
source code for the listings. For your convenience, source code for every example is
available from two sources:

 https://manning.com/books/rust-in-action
 https://github.com/rust-in-action/code

1.5 What does Rust look and feel like?
Rust is the programming language that allows Haskell and Java programmers to get
along. Rust comes close to the high-level, expressive feel of dynamic languages like
Haskell and Java while achieving low-level, bare-metal performance.

 We looked at a few “Hello, world!” examples in section 1.3, so let’s try something
slightly more complex to get a better feel for Rust’s features. Listing 1.2 provides a
quick look at what Rust can do for basic text processing. The source code for this list-
ing is in the ch1/ch1-penguins/src/main.rs file. Some features to notice include

Calls a function. Note
that parentheses follow
the function name.

https://manning.com/books/rust-in-action
https://github.com/rust-in-action/code

9What does Rust look and feel like?

S
re

into f

Buil
collec

of f
 Common control flow mechanisms—This includes for loops and the continue
keyword.

 Method syntax—Although Rust is not object-oriented as it does not support
inheritance, it carries over this feature of object-oriented languages.

 Higher-order programming—Functions can both accept and return functions. For
example, line 19 (.map(|field| field.trim())) includes a closure, also known
as an anonymous function or lambda function.

 Type annotations—Although relatively rare, these are occasionally required as a hint
to the compiler (for example, see line 27 beginning with if let Ok(length)).

 Conditional compilation—In the listing, lines 21–24 (if cfg!(…);) are not included
in release builds of the program.

 Implicit return—Rust provides a return keyword, but it’s usually omitted. Rust is
an expression-based language.

 1 fn main() {
 2 let penguin_data = "\
 3 common name,length (cm)
 4 Little penguin,33
 5 Yellow-eyed penguin,65
 6 Fiordland penguin,60
 7 Invalid,data
 8 ";
 9
10 let records = penguin_data.lines();
11
12 for (i, record) in records.enumerate() {
13 if i == 0 || record.trim().len() == 0 {
14 continue;
15 }
16
17 let fields: Vec<_> = record
18 .split(',')
19 .map(|field| field.trim())
20 .collect();
21 if cfg!(debug_assertions) {
22 eprintln!("debug: {:?} -> {:?}",
23 record, fields);
24 }
25
26 let name = fields[0];
27 if let Ok(length) = fields[1].parse::<f32>() {
28 println!("{}, {}cm", name, length);
29 }
30 }
31 }

Listing 1.2 might be confusing to some readers, especially those who have never seen
Rust before. Here are some brief notes before moving on:

Listing 1.2 Example of Rust code showing some basic processing of CSV data

Executable projects
require a main()
function.

Escapes the trailing
newline character

Skips header row
and lines with
only whitespace

Starts with a
line of textplits

cord
ields Trims whitespace

of each field

ds a
tion

ields

cfg! checks configuration
at compile time.

eprintln! prints to
standard error (stderr).

Attempts to parse
field as a floating-
point number

println! prints to
standard out (stdout).

10 CHAPTER 1 Introducing Rust
 On line 17, the fields variable is annotated with the type Vec<_>. Vec is short-
hand for _vector_, a collection type that can expand dynamically. The under-
score (_) instructs Rust to infer the type of the elements.

 On lines 22 and 28, we instruct Rust to print information to the console. The
println! macro prints its arguments to standard out (stdout), whereas
eprintln! prints to standard error (stderr).

Macros are similar to functions except that instead of returning data, these
return code. Macros are often used to simplify common patterns.

eprintln! and println! both use a string literal with an embedded mini-
language in their first argument to control their output. The {} placeholder
tells Rust to use a programmer-defined method to represent the value as a
string rather than the default representation available with {:?}.

 Line 27 contains some novel features. if let Ok(length) = fields[1].parse
::<f32>() reads as “attempt to parse fields[1] as a 32-bit floating-point num-
ber and, if that is successful, then assign the number to the length variable.”

The if let construct is a concise method of conditionally processing data
that also provides a local variable assigned to that data. The parse() method
returns Ok(T) (where T stands for any type) when it can successfully parse the
string; otherwise, it returns Err(E) (where E stands for an error type). The
effect of if let Ok(T) is to skip any error cases like the one that’s encountered
while processing the line Invalid,data.

When Rust is unable to infer the types from the surrounding context, it will
ask for you to specify those. The call to parse() includes an inline type annota-
tion as parse::<f32>().

Converting source code into an executable file is called compiling. To compile Rust
code, we need to install the Rust compiler and run it against the source code. To com-
pile listing 1.2, follow these steps:

1 Open a console prompt (such as cmd.exe, PowerShell, Terminal, or Alacritty).
2 Move to the ch1/ch1-penguins directory (not ch1/ch1-penguins/src) of the

source code you downloaded in section 1.4.
3 Execute cargo run. Its output is shown in the following code snippet:

$ cargo run
 Compiling ch1-penguins v0.1.0 (../code/ch1/ch1-penguins)
 Finished dev [unoptimized + debuginfo] target(s) in 0.40s
 Running `target/debug/ch1-penguins`
dbg: " Little penguin,33" -> ["Little penguin", "33"]
Little penguin, 33cm
dbg: " Yellow-eyed penguin,65" -> ["Yellow-eyed penguin", "65"]
Yellow-eyed penguin, 65cm
dbg: " Fiordland penguin,60" -> ["Fiordland penguin", "60"]
Fiordland penguin, 60cm
dbg: " Invalid,data" -> ["Invalid", "data"]

11What is Rust?
You probably noticed the distracting lines starting with dbg:. We can eliminate these
by compiling a release build using cargo’s --release flag. This conditional compilation
functionality is provided by the cfg!(debug_assertions) { … } block within lines 22–24
of listing 1.2. Release builds are much faster at runtime, but incur longer compilation
times:

$ cargo run --release
 Compiling ch1-penguins v0.1.0 (.../code/ch1/ch1-penguins)
 Finished release [optimized] target(s) in 0.34s
 Running `target/release/ch1-penguins`
Little penguin, 33cm
Yellow-eyed penguin, 65cm
Fiordland penguin, 60cm

It’s possible to further reduce the output by adding the -q flag to cargo commands.
-q is shorthand for quiet. The following snippet shows what that looks like:

$ cargo run -q --release
Little penguin, 33cm
Yellow-eyed penguin, 65cm
Fiordland penguin, 60cm

Listing 1.1 and listing 1.2 were chosen to pack as many representative features of Rust
into examples that are easy to understand. Hopefully these demonstrated that Rust pro-
grams have a high-level feel, paired with low-level performance. Let’s take a step back
from specific language features now and consider some of the thinking behind the
language and where it fits within the programming language ecosystem.

1.6 What is Rust?
Rust’s distinguishing feature as a programming language is its ability to prevent invalid
data access at compile time. Research projects by Microsoft’s Security Response Center
and the Chromium browser project both suggest that issues relating to invalid data
access account for approximately 70% of serious security bugs.13 Rust eliminates that
class of bugs. It guarantees that your program is memory-safe without imposing any run-
time costs.

 Other languages can provide this level of safety, but these require adding checks
that execute while your program is running, thus slowing it down. Rust manages to
break out of this continuum, creating its own space as illustrated by figure 1.1.

 Rust’s distinguishing feature as a professional community is its willingness to
explicitly include values into its decision-making process. This ethos of inclusion is
pervasive. Public messaging is welcoming. All interactions within the Rust community
are governed by its code of conduct. Even the Rust compiler’s error messages are
ridiculously helpful.

13 See the articles “We need a safer systems programming language,” http://mng.bz/VdN5 and “Memory safety,”
http://mng.bz/xm7B for more information.

http://mng.bz/VdN5
http://mng.bz/xm7B

12 CHAPTER 1 Introducing Rust
Until late 2018, visitors to the Rust home page were greeted with the (technically
heavy) message, “Rust is a systems programming language that runs blazingly fast, pre-
vents segfaults, and guarantees thread safety.” At that point, the community imple-
mented a change to its wording to put its users (and its potential users) at the center
(table 1.1).

Rust is labelled as a systems programming language, which tends to be seen as quite a spe-
cialized, almost esoteric branch of programming. However, many Rust programmers
have discovered that the language is applicable to many other domains. Safety, pro-
ductivity, and control are useful in all software engineering projects. Moreover, the
Rust community’s inclusiveness means that the language benefits from a steady stream
of new voices with diverse interests.

 Let’s flesh out those three goals: safety, productivity, and control. What are these
and why do these matter?

1.6.1 Goal of Rust: Safety

Rust programs are free from

 Dangling pointers—Live references to data that has become invalid over the
course of the program (see listing 1.3)

Table 1.1 Rust slogans over time. As Rust has developed its confidence, it has increasingly embraced
the idea of acting as a facilitator and supporter of everyone wanting to achieve their programming
aspirations.

Until late 2018 From that point onward

“Rust is a systems programming language that runs blazingly
fast, prevents segfaults, and guarantees thread safety.”

“Empowering everyone to build reliable
and efficient software.”

Most programming languages
operate within this band.
Rust provides both safety and control.

Python Rust

C

S
a

fe
ty

Control

Figure 1.1 Rust provides both safety
and control. Other languages have tended
to trade one against the other.

13What is Rust?
 Data races—The inability to determine how a program will behave from run to
run because external factors change (see listing 1.4)

 Buffer overflow—An attempt to access the 12th element of an array with only 6
elements (see listing 1.5)

 Iterator invalidation—An issue caused by something that is iterated over after
being altered midway through (see listing 1.6)

When programs are compiled in debug mode, Rust also protects against integer over-
flow. What is integer overflow? Well, integers can only represent a finite set of num-
bers; these have a fixed-width in memory. Integer overflow is what happens when the
integers hit their limit and flow over to the beginning again.

 The following listing shows a dangling pointer. Note that you’ll find this source
code in the ch1/ch1-cereals/src/main.rs file.

 1 #[derive(Debug)]
 2 enum Cereal {
 3 Barley, Millet, Rice,
 4 Rye, Spelt, Wheat,
 5 }
 6
 7 fn main() {
 8 let mut grains: Vec<Cereal> = vec![];
 9 grains.push(Cereal::Rye);
10 drop(grains);
11 println!("{:?}", grains);
12 }

Listing 1.3 contains a pointer within grains, which is created on line 8. Vec<Cereal>
is implemented with an internal pointer to an underlying array. But the listing does
not compile. An attempt to do so triggers an error message that complains about
attempting to “borrow” a “moved” value. Learning how to interpret that error mes-
sage and to fix the underlying error are topics for the pages to come. Here’s the out-
put from attempting to compile the code for listing 1.4:

$ cargo run
 Compiling ch1-cereals v0.1.0 (/rust-in-action/code/ch1/ch1-cereals)
error[E0382]: borrow of moved value: `grains`
 --> src/main.rs:12:22
 |
8 | let mut grains: Vec<Cereal> = vec![];
 | ------- move occurs because `grains` has type
 `std::vec::Vec<Cereal>`, which does not implement
 the `Copy` trait
9 | grains.push(Cereal::Rye);
10 | drop(grains);
 | ------ value moved here
11 |

Listing 1.3 Attempting to create a dangling pointer

Allows the println! macro
to print the Cereal enum

An enum (enumeration) is
a type with a fixed number
of legal variants.

Initializes an empty
vector of Cereal

Adds one item to
the grains vector

Deletes grains
and its contents

Attempts to access
the deleted value

14 CHAPTER 1 Introducing Rust
12 | println!("{:?}", grains);
 | ^^^^^^ value borrowed here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.
error: could not compile `ch1-cereals`.

Listing 1.4 shows an example of a data race condition. If you remember, this condi-
tion results from the inability to determine how a program behaves from run to run
due to changing external factors. You’ll find this code in the ch1/ch1-race/src/
main.rs file.

 1 use std::thread;
 2 fn main() {
 3 let mut data = 100;
 4
 5 thread::spawn(|| { data = 500; });
 6 thread::spawn(|| { data = 1000; });
 7 println!("{}", data);
 8 }

If you are unfamiliar with the term thread, the upshot is that this code is not determin-
istic. It’s impossible to know what value data will hold when main() exits. On lines 6 and
7 of the listing, two threads are created by calls to thread::spawn(). Each call takes a
closure as an argument, denoted by vertical bars and curly braces (e.g., || {…}). The
thread spawned on line 5 is attempting to set the data variable to 500, whereas the
thread spawned on line 6 is attempting to set it to 1,000. Because the scheduling of
threads is determined by the OS rather than the program, it’s impossible to know if
the thread defined first will be the one that runs first.

 Attempting to compile listing 1.5 results in a stampede of error messages. Rust does
not allow multiple places in an application to have write access to data. The code
attempts to allow this in three places: once within the main thread running main() and
once in each child thread created by thread::spawn(). Here’s the compiler message:

$ cargo run
 Compiling ch1-race v0.1.0 (rust-in-action/code/ch1/ch1-race)
error[E0373]: closure may outlive the current function, but it
 borrows `data`, which is owned by the current function
 --> src/main.rs:6:19
 |
6 | thread::spawn(|| { data = 500; });
 | ^^ ---- `data` is borrowed here
 | |
 | may outlive borrowed value `data`
 |
note: function requires argument type to outlive `'static`
 --> src/main.rs:6:5

Listing 1.4 Example of Rust preventing a race condition

Brings multi-threading
into local scope

thread::spawn() takes a
closure as an argument.

15What is Rust?
 |
6 | thread::spawn(|| { data = 500; });
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
help: to force the closure to take ownership of `data`
 (and any other referenced variables), use the `move` keyword
 |
6 | thread::spawn(move || { data = 500; });
 | ^^^^^^^

...
error: aborting due to 4 previous errors

Some errors have detailed explanations: E0373, E0499, E0502.
For more information about an error, try `rustc --explain E0373`.
error: could not compile `ch1-race`.

Listing 1.5 provides an example of a buffer overflow. A buffer overflow describes situa-
tions where an attempt is made to access items in memory that do not exist or that are
illegal. In our case, an attempt to access fruit[4] results in the program crashing, as
the fruit variable only contains three fruit. The source code for this listing is in the
file ch1/ch1-fruit/src/main.rs.

 1 fn main() {
 2 let fruit = vec![' ', ' ', ' '];
 3
 4 let buffer_overflow = fruit[4];
 5 assert_eq!(buffer_overflow, ' ')
 6 }

When listing 1.5 is compiled and executed, you’ll encounter this error message:

$ cargo run
 Compiling ch1-fruit v0.1.0 (/rust-in-action/code/ch1/ch1-fruit)
 Finished dev [unoptimized + debuginfo] target(s) in 0.31s
 Running `target/debug/ch1-fruit`
thread 'main' panicked at 'index out of bounds:
 the len is 3 but the index is 4', src/main.rs:3:25
note: run with `RUST_BACKTRACE=1` environment variable
 to display a backtrace

The next listing shows an example of iterator invalidation, where an issue is caused by
something that’s iterated over after being altered midway through. The source code
for this listing is in ch1/ch1-letters/src/main.rs.

 1 fn main() {
 2 let mut letters = vec![
 3 "a", "b", "c"
 4];

Listing 1.5 Example of invoking a panic via a buffer overflow

Listing 1.6 Attempting to modify an iterator while iterating over it

Three other errors omitted.

Rust will cause a crash rather
than assign an invalid memory
location to a variable.

assert_eq!() tests that
arguments are equal.

Creates a mutable
vector letters

16 CHAPTER 1 Introducing Rust
 5
 6 for letter in letters {
 7 println!("{}", letter);
 8 letters.push(letter.clone());
 9 }
10 }

Listing 1.6 fails to compile because Rust does not allow the letters variable to be
modified within the iteration block. Here’s the error message:

$ cargo run
 Compiling ch1-letters v0.1.0 (/rust-in-action/code/ch1/ch1-letters)
error[E0382]: borrow of moved value: `letters`
 --> src/main.rs:8:7
 |
2 | let mut letters = vec![
 | ----------- move occurs because `letters` has type
 | `std::vec::Vec<&str>`, which does not
 | implement the `Copy` trait
...
6 | for letter in letters {
 | -------
 | |
 | `letters` moved due to this implicit call
 | to `.into_iter()`
 | help: consider borrowing to avoid moving
 | into the for loop: `&letters`
7 | println!("{}", letter);
8 | letters.push(letter.clone());
 | ^^^^^^^ value borrowed here after move

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.
error: could not compile `ch1-letters`.

To learn more, run the command again with --verbose.

While the language of the error message is filled with jargon (borrow, move, trait, and so
on), Rust has protected the programmer from stepping into a trap that many others
fall into. And fear not—that jargon will become easier to understand as you work
through the first few chapters of this book.

 Knowing that a language is safe provides programmers with a degree of liberty.
Because they know their program won’t implode, they become much more willing to
experiment. Within the Rust community, this liberty has spawned the expression fear-
less concurrency.

1.6.2 Goal of Rust: Productivity

When given a choice, Rust prefers the option that is easiest for the developer. Many of
its more subtle features are productivity boosts. But programmer productivity is a diffi-
cult concept to demonstrate through an example in a book. Let’s start with something

Copies each letter
and appends it to the
end of letters

17What is Rust?
that can snag beginners—using assignment (=) within an expression that should use
an equality (==) test:

1 fn main() {
2 let a = 10;
3
4 if a = 10 {
5 println!("a equals ten");
6 }
7 }

In Rust, the preceding code fails to compile. The Rust compiler generates the follow-
ing message:

error[E0308]: mismatched types
 --> src/main.rs:4:8
 |
4 | if a = 10 {
 | ^^^^^^
 | |
 | expected `bool`, found `()`
 | help: try comparing for equality: `a == 10`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0308`.
error: could not compile `playground`.

To learn more, run the command again with --verbose.

At first, “mismatched types” might feel like a strange error message to encounter.
Surely we can test variables for equality against integers.

 After some thought, it becomes apparent why the if test receives the wrong type.
The if is not receiving an integer. It’s receiving the result of an assignment. In Rust,
this is the blank type: (). () is pronounced unit.14

 When there is no other meaningful return value, expressions return (). As the fol-
lowing shows, adding a second equals sign on line 4 results in a working program that
prints a equals ten:

1 fn main() {
2 let a = 10;
3
4 if a == 10 {
5 println!("a equals ten");
6 }
7 }

14 The name unit reveals some of Rust’s heritage as a descendant of the ML family of programming languages
that includes OCaml and F#. The term stems from mathematics. Theoretically, a unit type only has a single
value. Compare this with Boolean types that have two values, true or false, or strings that have an infinite
number of valid values.

Using a valid assignment
operator (==) allows the
program to compile.

18 CHAPTER 1 Introducing Rust
Rust has many ergonomic features. It offers generics, sophisticated data types, pattern
matching, and closures.15 Those who have worked with other ahead-of-time compila-
tion languages are likely to appreciate Rust’s build system and its comprehensive pack-
age manager: cargo.

 At first glance, we see that cargo is a front end for rustc, the Rust compiler, but
cargo provides several additional utilities including the following:

 cargo new creates a skeleton Rust project in a new directory (cargo init uses
the current directory).

 cargo build downloads dependencies and compiles the code.
 cargo run executes cargo build and then also runs the resulting executable

file.
 cargo doc builds HTML documentation for every dependency in the current

project.

1.6.3 Goal of Rust: Control

Rust offers programmers fine-grained control over how data structures are laid out in
memory and their access patterns. While Rust uses sensible defaults that align with its
“zero cost abstractions” philosophy, those defaults do not suit all situations.

 At times, it is imperative to manage your application’s performance. It might mat-
ter to you that data is stored in the stack rather than on the heap. Perhaps, it might
make sense to add reference counting to create a shared reference to a value. Occasion-
ally, it might be useful to create one’s own type of pointer for a particular access pat-
tern. The design space is large and Rust provides the tools to allow you to implement
your preferred solution.

NOTE If terms such as stack, heap, and reference counting are new, don’t put the
book down! We’ll spend lots of time explaining these and how they work
together throughout the rest of the book.

Listing 1.7 prints the line a: 10, b: 20, c: 30, d: Mutex { data: 40 }. Each represen-
tation is another way to store an integer. As we progress through the next few chap-
ters, the trade-offs related to each level become apparent. For the moment, the
important thing to remember is that the menu of types is comprehensive. You are wel-
come to choose exactly what’s right for your specific use case.

 Listing 1.7 also demonstrates multiple ways to create integers. Each form provides
differing semantics and runtime characteristics. But programmers retain full control
of the trade-offs that they want to make.

15 If these terms are unfamiliar, do keep reading. These are explained throughout the book. They are language
features that you will miss in other languages.

19Rust’s big features

In
o

 1 use std::rc::Rc;
 2 use std::sync::{Arc, Mutex};
 3
 4 fn main() {
 5 let a = 10;
 6 let b = Box::new(20);
 7 let c = Rc::new(Box::new(30));
 8 let d = Arc::new(Mutex::new(40));
 9 println!("a: {:?}, b: {:?}, c: {:?}, d: {:?}", a, b, c, d);
10 }

To understand why Rust is doing something the way it is, it can be helpful to refer
back to these three principles:

 The language’s first priority is safety.
 Data within Rust is immutable by default.
 Compile-time checks are strongly preferred. Safety should be a “zero-cost

abstraction.”

1.7 Rust’s big features
Our tools shape what we believe we can create. Rust enables you to build the software
that you want to make, but were too scared to try. What kind of tool is Rust? Flowing
from the three principles discussed in the last section are three overarching features
of the language:

 Performance
 Concurrency
 Memory efficiency

1.7.1 Performance

Rust offers all of your computer’s available performance. Famously, Rust does not rely
on a garbage collector to provide its memory safety.

 There is, unfortunately, a problem with promising you faster programs: the speed
of your CPU is fixed. Thus, for software to run faster, it needs to do less. Yet, the lan-
guage is large. To resolve this conflict, Rust pushes the burden onto the compiler.

 The Rust community prefers a bigger language with a compiler that does more,
rather than a simpler language where the compiler does less. The Rust compiler
aggressively optimizes both the size and speed of your program. Rust also has some
less obvious tricks:

 Cache-friendly data structures are provided by default. Arrays usually hold data within
Rust programs rather than deeply nested tree structures that are created by
pointers. This is referred to as data-oriented programming.

Listing 1.7 Multiple ways to create integer values

teger
n the
stack

Integer on the heap, also
known as a boxed integer

Boxed integer wrapped
within a reference counter

Integer wrapped in an atomic
reference counter and protected
by a mutual exclusion lock

20 CHAPTER 1 Introducing Rust
 The availability of a modern package manager (cargo) makes it trivial to benefit from tens
of thousands of open source packages. C and C++ have much less consistency here,
and building large projects with many dependencies is typically difficult.

 Methods are always dispatched statically unless you explicitly request dynamic dispatch.
This enables the compiler to heavily optimize code, sometimes to the point of
eliminating the cost of a function call entirely.

1.7.2 Concurrency

Asking a computer to do more than one thing at the same time has proven difficult
for software engineers. As far as an OS is concerned, two independent threads of exe-
cution are at liberty to destroy each other if a programmer makes a serious mistake.
Yet Rust has spawned the expression fearless concurrency. Its emphasis on safety crosses
the bounds of independent threads. There is no global interpreter lock (GIL) to con-
strain a thread’s speed. We explore some of the implications of this in part 2.

1.7.3 Memory efficiency

Rust enables you to create programs that require minimal memory. When needed,
you can use fixed-size structures and know exactly how every byte is managed. High-
level constructs, such as iteration and generic types, incur minimal runtime overhead.

1.8 Downsides of Rust
It’s easy to talk about this language as if it is the panacea for all software engineering.
For example

 “A high-level syntax with low-level performance!”
 “Concurrency without crashes!”
 “C with perfect safety!”

These slogans (sometimes overstated) are great. But for all of its merits, Rust does
have some disadvantages.

1.8.1 Cyclic data structures

In Rust, it is difficult to model cyclic data like an arbitrary graph structure. Imple-
menting a doubly-linked list is an undergraduate-level computer science problem. Yet
Rust’s safety checks do hamper progress here. If you’re new to the language, avoid
implementing these sorts of data structures until you’re more familiar with Rust.

1.8.2 Compile times

Rust is slower at compiling code than its peer languages. It has a complex compiler
toolchain that receives multiple intermediate representations and sends lots of code
to the LLVM compiler. The unit of compilation for a Rust program is not an individ-
ual file but a whole package (known affectionately as a crate). As crates can include

21TLS security case studies
multiple modules, these can be exceedingly large units to compile. Although this
enables whole-of-crate optimization, it requires whole-of-crate compilation as well.

1.8.3 Strictness

It’s impossible—well, difficult—to be lazy when programming with Rust. Programs
won’t compile until everything is just right. The compiler is strict, but helpful.

 Over time, it’s likely that you’ll come to appreciate this feature. If you’ve ever pro-
grammed in a dynamic language, then you may have encountered the frustration of
your program crashing because of a misnamed variable. Rust brings that frustration
forward so that your users don’t have to experience the frustration of things crashing.

1.8.4 Size of the language

Rust is large! It has a rich type system, several dozen keywords, and includes some fea-
tures that are unavailable in other languages. These factors all combine to create a
steep learning curve. To make this manageable, I encourage learning Rust gradually.
Start with a minimal subset of the language and give yourself time to learn the details
when you need these. That is the approach taken in this book. Advanced concepts are
deferred until much later.

1.8.5 Hype

The Rust community is wary of growing too quickly and being consumed by hype. Yet,
a number of software projects have encountered this question in their Inbox: “Have
you considered rewriting this in Rust?” Unfortunately, software written in Rust is still
software. It not immune to security problems and does not offer a panacea to all of
software engineering’s ills.

1.9 TLS security case studies
To demonstrate that Rust will not alleviate all errors, let’s examine two serious exploits
that threatened almost all internet-facing devices and consider whether Rust would
have prevented those.

 By 2015, as Rust gained prominence, implementations of SSL/TLS (namely,
OpenSSL and Apple’s own fork) were found to have serious security holes. Known
informally as Heartbleed and goto fail;, both exploits provide opportunities to test Rust’s
claims of memory safety. Rust is likely to have helped in both cases, but it is still possi-
ble to write Rust code that suffers from similar issues.

1.9.1 Heartbleed

Heartbleed, officially designated as CVE-2014-0160,16 was caused by re-using a buffer
incorrectly. A buffer is a space set aside in memory for receiving input. Data can leak
from one read to the next if the buffer’s contents are not cleared between writes.

16 See “CVE-2014-0160 Detail,” https://nvd.nist.gov/vuln/detail/CVE-2014-0160.

https://nvd.nist.gov/vuln/detail/CVE-2014-0160

22 CHAPTER 1 Introducing Rust
 Why does this situation occur? Programmers hunt for performance. Buffers are
reused to minimize how often memory applications ask for memory from the OS.

 Imagine that we want to process some secret information from multiple users. We
decide, for whatever reason, to reuse a single buffer through the course of the pro-
gram. If we don’t reset this buffer once we use it, information from earlier calls will
leak to the latter ones. Here is a précis of a program that would encounter this error:

let buffer = &mut[0u8; 1024];
read_secrets(&user1, buffer);
store_secrets(buffer);

read_secrets(&user2, buffer);
store_secrets(buffer);

Rust does not protect you from logical errors. It ensures that your data is never able to
be written in two places at the same time. It does not ensure that your program is free
from all security issues.

1.9.2 Goto fail;

The goto fail; bug, officially designated as CVE-2014-1266,17 was caused by program-
mer error coupled with C design issues (and potentially by its compiler not pointing
out the flaw). A function that was designed to verify a cryptographic key pair ended up
skipping all checks. Here is a selected extract from the original SSLVerifySigned-
ServerKeyExchange function with a fair amount of obfuscatory syntax retained:18

 1 static OSStatus
 2 SSLVerifySignedServerKeyExchange(SSLContext *ctx,
 3 bool isRsa,
 4 SSLBuffer signedParams,
 5 uint8_t *signature,
 6 UInt16 signatureLen)
 7{
 8 OSStatus err;
 9 ...
10
11 if ((err = SSLHashSHA1.update(
12 &hashCtx, &serverRandom)) != 0)
13 goto fail;
14
15 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

17 See “CVE-2014-1266 Detail,” https://nvd.nist.gov/vuln/detail/CVE-2014-1266.
18 Original available at http://mng.bz/RKGj.

Binds a reference (&) to a mutable (mut) array
([…]) that contains 1,024 unsigned 8-bit integers

(u8) initialized to 0 to the variable buffer Fills buffer with
bytes from the data
from user1

The buffer still contains data
from user1 that may or may
not be overwritten by user2.

Initializes OSStatus with
a pass value (e.g., 0)

A series of defensive
programming checks

https://nvd.nist.gov/vuln/detail/CVE-2014-1266
http://mng.bz/RKGj

23Where does Rust fit best?
16 goto fail;
17 goto fail;
18 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
19 goto fail;
20
21 err = sslRawVerify(ctx,
22 ctx->peerPubKey,
23 dataToSign, /* plaintext */
24 dataToSignLen, /* plaintext length */
25 signature,
26 signatureLen);
27 if(err) {
28 sslErrorLog("SSLDecodeSignedServerKeyExchange: sslRawVerify "
29 "returned %d\n", (int)err);
30 goto fail;
31 }
32
33 fail:
34 SSLFreeBuffer(&signedHashes);
35 SSLFreeBuffer(&hashCtx);
36 return err;
37 }

In the example code, the issue lies between lines 15 and 17. In C, logical tests do not
require curly braces. C compilers interpret those three lines like this:

 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) {
 goto fail;
 }
 goto fail;

Would Rust have helped? Probably. In this specific case, Rust’s grammar would have
caught the bug. It does not allow logical tests without curly braces. Rust also issues a
warning when code is unreachable. But that doesn’t mean the error is made impossi-
ble in Rust. Stressed programmers under tight deadlines make mistakes. In general,
similar code would compile and run.

TIP Code with caution.

1.10 Where does Rust fit best?
Although it was designed as a systems programming language, Rust is a general-purpose
language. It has been successfully deployed in many areas, which we discuss next.

1.10.1 Command-line utilities

Rust offers three main advantages for programmers creating command-line utilities:
minimal startup time, low memory use, and easy deployment. Programs start their
work quickly because Rust does not need to initialize an interpreter (Python, Ruby,
etc.) or virtual machine (Java, C#, etc.).

Unconditional goto skips SSLHashSHA1.final()
and the (significant) call to sslRawVerify().

Returns the pass value of 0, even for inputs
that should have failed the verification test

24 CHAPTER 1 Introducing Rust
 As a bare metal language, Rust produces memory-efficient programs.19 As you’ll
see throughout the book, many types are zero-sized. That is, these only exist as hints to
the compiler and take up no memory at all in the running program.

 Utilities written in Rust are compiled as static binaries by default. This compilation
method avoids depending on shared libraries that you must install before the pro-
gram can run. Creating programs that can run without installation steps makes these
easy to distribute.

1.10.2 Data processing

Rust excels at text processing and other forms of data wrangling. Programmers bene-
fit from control over memory use and fast startup times. As of mid-2017, Rust touts the
world’s fastest regular expression engine. In 2019, the Apache Arrow data-processing
project—foundational to the Python and R data science ecosystems—accepted the
Rust-based DataFusion project.

 Rust also underlies the implementation of multiple search engines, data-processing
engines, and log-parsing systems. Its type system and memory control provide you with
the ability to create high throughput data pipelines with a low and stable memory
footprint. Small filter programs can be easily embedded into the larger framework via
Apache Storm, Apache Kafka, or Apache Hadoop streaming.

1.10.3 Extending applications

Rust is well suited for extending programs written in a dynamic language. This
enables JNI (Java Native Interface) extensions, C extensions, or Erlang/Elixir NIFs
(native implemented functions) in Rust. C extensions are typically a scary proposition.
These tend to be quite tightly integrated with the runtime. Make a mistake and you
could be looking at runaway memory consumption due to a memory leak or a com-
plete crash. Rust takes away a lot of this anxiety.

 Sentry, a company that processes application errors, finds that Rust is an excellent
candidate for rewriting CPU-intensive components of their Python system.20

 Dropbox used Rust to rewrite the file synchronization engine of its client-side
application: “More than performance, [Rust’s] ergonomics and focus on cor-
rectness have helped us tame sync’s complexity.”21

1.10.4 Resource-constrained environments

C has occupied the domain of microcontrollers for decades. Yet, the Internet of
Things (IoT) is coming. That could mean many billions of insecure devices exposed
to the network. Any input parsing code will be routinely probed for weaknesses. Given
how infrequently firmware updates for these devices occur, it’s critical that these are as

19 The joke goes that Rust is as close to bare metal as possible.
20 See “Fixing Python Performance with Rust,” http://mng.bz/ryxX.
21 See “Rewriting the heart of our sync engine,” http://mng.bz/Vdv5.

http://mng.bz/ryxX
http://mng.bz/Vdv5

25Where does Rust fit best?
secure as possible from the outset. Rust can play an important role here by adding a
layer of safety without imposing runtime costs.

1.10.5 Server-side applications

Most applications written in Rust live on the server. These could be serving web traffic
or supporting businesses running their operations. There is also a tier of services that
sit between the OS and your application. Rust is used to write databases, monitoring
systems, search appliances, and messaging systems. For example

 The npm package registry for the JavaScript and node.js communities is written
in Rust.22

 sled (https://github.com/spacejam/sled), an embedded database, can process
a workload of 1 billion operations that includes 5% writes in less than a minute
on a 16-core machine.

 Tantivy, a full text search engine, can index 8 GB of English Wikipedia in
approximately 100 s on a 4-core desktop machine.23

1.10.6 Desktop applications

There is nothing inherent in Rust’s design that prevents it from being deployed to
develop user-facing software. Servo, the web browser engine that acted as an incuba-
tor for Rust’s early development, is a user-facing application. Naturally, so are games.

1.10.7 Desktop

There is still a significant need to write applications that live on people’s computers.
Desktop applications are often complex, difficult to engineer, and hard to support.
With Rust’s ergonomic approach to deployment and its rigor, it is likely to become the
secret sauce for many applications. To start, these will be built by small, independent
developers. As Rust matures, so will the ecosystem.

1.10.8 Mobile

Android, iOS, and other smartphone operating systems generally provide a blessed
path for developers. In the case of Android, that path is Java. In the case of macOS,
developers generally program in Swift. There is, however, another way.

 Both platforms provide the ability for native applications to run on them. This is
generally intended for applications written in C++, such as games, to be able to be
deployed to people’s phones. Rust is able to talk to the phone via the same interface
with no additional runtime cost.

22 See “Community makes Rust an easy choice for npm: The npm Registry uses Rust for its CPU-bound bottle-
necks,” http://mng.bz/xm9B.

23 See “Of tantivy’s indexing,” https://fulmicoton.com/posts/behold-tantivy-part2/.

http://mng.bz/xm9B
https://github.com/spacejam/sled
https://fulmicoton.com/posts/behold-tantivy-part2/

26 CHAPTER 1 Introducing Rust
1.10.9 Web

As you are probably aware, JavaScript is the language of the web. Over time though,
this will change. Browser vendors are developing a standard called WebAssembly
(Wasm) that promises to be a compiler target for many languages. Rust is one of the
first. Porting a Rust project to the browser requires only two additional command-line
commands. Several companies are exploring the use of Rust in the browser via Wasm,
notably CloudFlare and Fastly.

1.10.10 Systems programming

In some sense, systems programming is Rust’s raison d’être. Many large programs
have been implemented in Rust, including compilers (Rust itself), video game engines,
and operating systems. The Rust community includes writers of parser generators,
databases, and file formats.

 Rust has proven to be a productive environment for programmers who share
Rust’s goals. Three standout projects in this area include the following:

 Google is sponsoring the development of Fuchsia OS, an operating system for
devices.24

 Microsoft is actively exploring writing low-level components in Rust for Win-
dows.25

 Amazon Web Services (AWS) is building Bottlerocket, a bespoke OS for hosting
containers in the cloud.26

1.11 Rust’s hidden feature: Its community
It takes more than software to grow a programming language. One of the things that
the Rust team has done extraordinarily well is to foster a positive and welcoming com-
munity around the language. Everywhere you go within the Rust world, you’ll find
that you’ll be treated with courtesy and respect.

1.12 Rust phrase book
When you interact with members of the Rust community, you’ll soon encounter a few
terms that have special meaning. Understanding the following terms makes it easier
to understand why Rust has evolved the way that it has and the problems that it
attempts to solve:

 Empowering everyone—All programmers regardless of ability or background are
welcome to participate. Programming, and particularly systems programming,
should not be restricted to a blessed few.

24 See “Welcome to Fuchsia!,” https://fuchsia.dev/.
25 See “Using Rust in Windows,” http://mng.bz/A0vW.
26 See “Bottlerocket: Linux-based operating system purpose-built to run containers,” https://aws.amazon.com/

bottlerocket/.

https://fuchsia.dev/
http://mng.bz/A0vW
https://aws.amazon.com/bottlerocket/
https://aws.amazon.com/bottlerocket/
https://aws.amazon.com/bottlerocket/

27Summary
 Blazingly fast—Rust is a fast programming language. You’ll be able to write pro-
grams that match or exceed the performance of its peer languages, but you will
have more safety guarantees.

 Fearless concurrency—Concurrent and parallel programming have always been
seen as difficult. Rust frees you from whole classes of errors that have plagued
its peer languages.

 No Rust 2.0—Rust code written today will always compile with a future Rust
compiler. Rust is intended to be a reliable programming language that can be
depended upon for decades to come. In accordance with semantic versioning,
Rust is never backward-incompatible, so it will never release a new major ver-
sion.

 Zero-cost abstractions—The features you gain from Rust impose no runtime cost.
When you program in Rust, safety does not sacrifice speed.

Summary
 Many companies have successfully built large software projects in Rust.
 Software written in Rust can be compiled for the PC, the browser, and the

server, as well as mobile and IoT devices.
 The Rust language is well loved by software developers. It has repeatedly won

Stack Overflow’s “most loved programming language” title.
 Rust allows you to experiment without fear. It provides correctness guarantees

that other tools are unable to provide without imposing runtime costs.
 With Rust, there are three main command_line tools to learn:

– cargo, which manages a whole crate
– rustup, which manages Rust installations
– rustc, which manages compilation of Rust source code

 Rust projects are not immune from all bugs.
 Rust code is stable, fast, and light on resources.

Part 1

Rust language distinctives

Part 1 of the book is a quick-fire introduction to the Rust programming lan-
guage. By the end of the chapters in this part, you will have a good understand-
ing of Rust syntax and know what motivates people to choose Rust. You will also
understand some fundamental differences between Rust and its peer languages.

Language foundations
This chapter introduces you to the fundamentals of Rust programming. By the end
of the chapter, you will be able to create command-line utilities and should be able
to get the gist of most Rust programs. We’ll work through most of the language’s
syntax, but defer much of the detail about why things are how they are for later in
the book.

NOTE Programmers who have experience with another programming lan-
guage will benefit the most from this chapter. If you are an experienced
Rust programmer, feel free to skim through it.

Beginners are welcomed. Rust’s community strives to be responsive to newcomers.
At times, you may strike a mental pothole when you encounter terms such as lifetime
elision, hygienic macros, move semantics, and algebraic data types without context. Don’t

This chapter covers
 Coming to grips with the Rust syntax

 Learning fundamental types and data
structures

 Building command-line utilities

 Compiling programs
31

32 CHAPTER 2 Language foundations
be afraid to ask for help. The community is much more welcoming than these helpful,
yet opaque, terms might suggest.

 In this chapter, we will build grep-lite, a greatly stripped-down version of the ubiqui-
tous grep utility. Our grep-lite program looks for patterns within text and prints lines
that match. This simple program allows us to focus on the unique features of Rust.

 The chapter takes a spiral approach to learning. A few concepts will be discussed
multiple times. With each iteration, you will find yourself learning more. Figure 2.1
shows a completely unscientific map of the chapter.

It’s highly recommended that you follow along with the examples in this book. As a
reminder, to access or download the source code for the listings, use either of these
two sources:

 https://manning.com/books/rust-in-action
 https://github.com/rust-in-action/code

Primitive Types:

integers, text,

and so on

Complex Types:

struct enumand

Functions

and methods

Control Flow:

if else match/ , ,

and looping
Collections:

vectors, arrays,

and tuples

Rust’s utilities:

cargo and rustc

Project tooling:

crates and third-

party libraries

Figure 2.1 Chapter topic outline. Starting with primitive types, the chapter progresses through
several concepts with increasing levels of depth.

https://manning.com/books/rust-in-action
https://github.com/rust-in-action/code

33Creating a running program
2.1 Creating a running program
Every plain text file has a hidden superpower: when it includes the right symbols, it
can be converted into something that can be interpreted by a CPU. That is the magic
of a programming language. This chapter’s aim is to allow you to become familiar
with the process of converting Rust source code into a running program.

 Understanding this process is more fun than it sounds! And it sets you up for an
exciting learning journey. By the end of chapter 4, you will have implemented a vir-
tual CPU that can also interpret programs that you create.

2.1.1 Compiling single files with rustc

Listing 2.1 is a short, yet complete Rust program. To translate it into a working pro-
gram, we use software called a compiler. The compiler’s role is to translate the source
code into machine code, as well as take care of lots of bookkeeping to satisfy the oper-
ating system (OS) and CPU that it is a runnable program. The Rust compiler is called
rustc. You’ll find the source code for listing 2.1 in the file ch2/ok.rs.

 1 fn main() {
 2 println!("OK")
 3 }

To compile a single file written in Rust into a working program

1 Save your source code to a file. In our case, we’ll use the filename ok.rs.
2 Make sure that the source code includes a main() function.
3 Open a shell window such as Terminal, cmd.exe, Powershell, bash, zsh, or any

other.
4 Execute the command rustc <file>, where <file> is the file you want to

compile.

When compilation succeeds, rustc sends no output to the console. Behind the scenes,
rustc has dutifully created an executable, using the input filename to choose the out-
put filename.

 Assuming that you’ve saved listing 2.1 to a file called ok.rs, let’s see what that looks
like. The following snippet provides a short demonstration of the process:

$ rustc ok.rs
$./ok
OK

2.1.2 Compiling Rust projects with cargo

Most Rust projects are larger than a single file. These typically include dependencies.
To prepare ourselves for that, we’ll use a higher-level tool than rustc, called cargo.
cargo understands how to drive rustc (and much more).

Listing 2.1 Almost the shortest valid Rust program

For Windows, include the .exe filename
extension (for example, ok.exe).

34 CHAPTER 2 Language foundations
 Migrating from a single file workflow managed by rustc to one managed by cargo is
a two-stage process. The first is to move that original file into an empty directory.
Then execute the cargo init command.

 Here is a detailed overview of that process, assuming that you are starting from a
file called ok.rs generated by following the steps in the previous section:

1 Run mkdir <project> to create an empty directory (e.g., mkdir ok).
2 Move your source code into the <project> directory (e.g., mv ok.rs ok).
3 Change to the <project> directory (e.g., cd ok).
4 Run cargo init.

From this point on, you can issue cargo run to execute your project’s source code.
One difference from rustc is that compiled executables are found in a <project>/
target subdirectory. Another is that cargo provides much more output by default:

$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 0.03s
 Running `target/debug/ok`
OK

If you’re ever curious about what cargo is doing under the hood to drive rustc, add
the verbose flag (-v) to your command:

$ rm -rf target/
$ cargo run -v
 Compiling ok v0.1.0 (/tmp/ok)
 Running `rustc
 --crate-name ok
 --edition=2018
 ok.rs
 --error-format=json
 --json=diagnostic-rendered-ansi
 --crate-type bin
 --emit=dep-info,link
 -C embed-bitcode=no
 -C debuginfo=2
 -C metadata=55485250d3e77978
 -C extra-filename=-55485250d3e77978
 --out-dir /tmp/ok/target/debug/deps
 -C incremental=/tmp/target/debug/incremental
 -L dependency=/tmp/ok/target/debug/deps
 -C link-arg=-fuse-ld=lld`
 Finished dev [unoptimized + debuginfo] target(s) in 0.31s
 Running `target/debug/ok`
OK

2.2 A glance at Rust’s syntax
Rust is boring and predictable where possible. It has variables, numbers, functions,
and other familiar things that you have seen in other languages. For example, it delimits
blocks with curly brackets ({ and }), it uses a single equals sign as its assignment oper-
ator (=), and it is whitespace-agnostic.

Added here to provoke
cargo into compiling
the project from
scratch

35A glance at Rust’s syntax
2.2.1 Defining variables and calling functions

Let’s look at another short listing to introduce some fundamentals: defining variables
with type annotations and calling functions. Listing 2.2 prints a + b = 30 to the con-
sole. As you can see from lines 2–5 in the listing, there are multiple syntactic choices
for annotating data types to integers. Use whichever feels most natural for the situa-
tion at hand. The source code for this listing is in ch2/ch2-first-steps.rs.

 1 fn main() {
 2 let a = 10;
 3 let b: i32 = 20;
 4 let c = 30i32;
 5 let d = 30_i32;
 6 let e = add(add(a, b), add(c, d));
 7
 8 println!("(a + b) + (c + d) = {}", e);
 9 }
10
11 fn add(i: i32, j: i32) -> i32 {
12 i + j
13 }

NOTE In the listing, be careful about adding a semicolon to the add() function
declaration. This changes the semantics, returning () (unit) rather than i32.

Although there are only 13 lines of code, there is quite a lot packed into listing 2.2.
Here’s a brief description that should provide the gist of what’s going on. We will
cover the details in the rest of the chapter.

 In line 1 (fn main() {), the fn keyword begins a function definition. The entry
point to all Rust programs is main(). It takes no arguments and returns no value.1

Code blocks, also known as lexical scopes, are defined with curly braces: { and }.
 In line 2 (let a = 10;), we use let to declare variable bindings. Variables are

immutable by default, meaning that they are read-only rather than read-write. And
finally, statements are delimited with semicolons (;).

 In line 3 (let b: i32 = 20;), you can designate a specific data type for the com-
piler. At times, this will be required as the compiler will be unable to deduce a unique
type on your behalf.

 In line 4 (let c = 30i32;), you’ll note that Rust’s numeric literals can include types
annotations. This can be helpful when navigating complex numerical expressions. And

Listing 2.2 Adding integers using variables and declaring types

1 This isn’t technically correct, but is accurate enough for now. If you’re an experienced Rust programmer skim-
ming through this chapter, you’ll know that main() returns () (unit) by default and can also return a Result.

Rust is flexible with
the location of the

main() function.

Types can be inferred
by the compiler…

…or declared by the programmer
when creating variables.

Numeric types can include a type
annotation in their literal form.

Numbers can include underscores,
which are intended to increase
readability and have no functional
impact.

Type declarations are required
when defining functions.

Functions return the last
expression’s result so that
return is not required.

36 CHAPTER 2 Language foundations
in line 5 (let c = 30_i32;), you’ll see that Rust permits the use of underscores within
numeric literals. These increase readability but are insignificant to the compiler. In
line 6 (let e = add(add(a, b), add(c, d));), it should be easy to see that calling func-
tions looks like what you’ve experienced in most other programming languages.

 In line 8 (println!("(a + b) + (c + d) = {}", e);), println!() is a macro,
which is function-like but returns code rather than values. When printing to the con-
sole, every input data type has its own way of being represented as a text string.
println!() takes care of figuring out the exact methods to call on its arguments.

 Strings use double quotes (") rather than single quotes ('). Rust uses single quotes
for single characters, which are a distinct type, char. And with Rust, string formatting
uses {} as a placeholder, rather than the C-like printf style of %s or other variants.

 Finally, in line 10 (fn add(…) -> i32 {), you can see that Rust’s syntax for defining
functions is similar to those programming languages that use explicit type declara-
tions. Commas delimit parameters, and type declarations follow variable names. The
dagger (->) or thin arrow syntax indicates the return type.

2.3 Numbers
Computers have been associated with numbers for longer than you have been able to
say “formula translator.” This section discusses how to create numeric types in Rust
and how to perform operations on these.

2.3.1 Integers and decimal (floating-point) numbers

Rust uses a relatively conventional syntax for creating integers (1, 2, …) and floating-
point numbers (1.0, 1.1, …). Operations on numbers use infix notation, meaning that
numeric expressions look like those that you’re used to seeing in most programming lan-
guages. To operate on multiple types, Rust also allows the same token (+) for addition.
This is called operator overloading. Some notable differences from other languages follow:

 Rust includes a large number of numeric types. You will become used to declaring
the size in bytes, which affects how many numbers the type can represent and
whether your type is able to represent negative numbers.

 Conversions between types are always explicit. Rust does not automatically convert
your 16-bit integer into a 32-bit integer.

 Rust’s numbers can have methods. For example, to round 24.5 to the nearest inte-
ger, Rust programmers use 24.5_f32.round() rather than (round(24.5_f32)).
Here, the type suffix is required because a concrete type is necessary.

To start, let’s consider a small example. You’ll find the code in ch2/ch2-intro-to-
numbers.rs in the examples for this book. Listing 2.3 prints these few lines to the
console:

20 + 21 + 22 = 63
1000000000000
42

37Numbers

Num

meth

Float
p

lite
can

have
suffixe

…
op

unders
 1 fn main() {
 2 let twenty = 20;
 3 let twenty_one: i32 = 21;
 4 let twenty_two = 22i32;
 5
 6 let addition = twenty + twenty_one + twenty_two;
 7 println!("{} + {} + {} = {}", twenty, twenty_one, twenty_two, addition);
 8
 9 let one_million: i64 = 1_000_000;
10 println!("{}", one_million.pow(2));
11
12 let forty_twos = [
13 42.0,
14 42f32,
15 42.0_f32,
16];
17
18/ println!("{:02}", forty_twos[0]);
19 }

2.3.2 Integers with base 2, base 8, and base 16 notation

Rust also has built-in support for numeric literals that allow you to define integers in
base 2 (binary), base 8 (octal), and base 16 (hexadecimal). This notation is also avail-
able within the formatting macros like println!. Listing 2.4 demonstrates the three
styles. You can find the source code for this listing in ch2/ch2-non-base2.rs. It pro-
duces the following output:

base 10: 3 30 300
base 2: 11 11110 100101100
base 8: 3 36 454
base 16: 3 1e 12c

 1 fn main() {
 2 let three = 0b11;
 3 let thirty = 0o36;
 4 let three_hundred = 0x12C;
 5
 6 println!("base 10: {} {} {}", three, thirty, three_hundred);
 7 println!("base 2: {:b} {:b} {:b}", three, thirty, three_hundred);
 8 println!("base 8: {:o} {:o} {:o}", three, thirty, three_hundred);
 9 println!("base 16: {:x} {:x} {:x}", three, thirty, three_hundred);
10 }

Listing 2.3 Numeric literals and basic operations on numbers in Rust

Listing 2.4 Using base 2, base 8, and base 16 numeric literals

Rust infers a type
on your behalf if you
don’t supply one…

…which is done
by adding type
annotations
(i32)…

…or type suffixes.

Underscores increase readability
and are ignored by the compiler.

bers
have
ods.

Creates an array of numbers, which must all be the
same type, by surrounding those with square brackets

Floating-point literals without an explicit
type annotation become 32-bit or 64-bit,
depending on context.

ing-
oint
rals
also
type
s…

and
tional
cores.

Elements within arrays can be
indexed numerically, starting at 0.

The 0b prefix indicates
binary (base 2) numerals.

The 0o prefix indicates
octal (base 8) numerals.

The 0x prefix indicates
hexadecimal (base 16) numerals.

38 CHAPTER 2 Language foundations
In binary (base 2) numerals, 0b11 equals 3 because 3 = 2 × 1 + 1 × 1. With octal (base 8)
numerals, 0o36 equals 30 because 30 = 8 × 3 + 1 × 6. And with hexadecimal (base 16)
numerals, 0x12C equals 300 because 300 = 256 × 1 + 16 × 2 + 1 × 12. Table 2.1 shows
the types that represent scalar numbers.

Rust contains a full complement of numeric types. The types are grouped into a few
families:

 Signed integers (i) represent negative as well as positive integers.
 Unsigned integers (u) only represent positive integers but can go twice as high

as their signed counterparts.
 Floating-point types (f) represent real numbers with special bit patterns to rep-

resent infinity, negative infinity, and “not a number” values.

Integer width is the number of bits that the type uses in RAM and in the CPU. Types that
take up more space, such as u32 vs. i8, can represent a wider range of numbers. But this
incurs the expense of needing to store extra zeros for smaller numbers, as table 2.2 shows.

Although we’ve only touched on numbers, we nearly have enough exposure to Rust to
create a prototype of our pattern-matching program. But let’s look at comparing
numbers before we create our program.

2.3.3 Comparing numbers

Rust’s numeric types support a large suite of comparisons that you’re probably famil-
iar with. Enabling support for these comparisons is provided by a feature that you
have not encountered yet. It is called traits.2 Table 2.3 summarizes the comparison
operators available to you.

Table 2.1 Rust types for representing scalar (single) numbers

i8, i16, i32, i64 Signed integers ranging from 8 bit to 64 bit.

u8, u16, u32, u64 Unsigned integers ranging from 8 bit to 64 bit.

f32, f64 Floating-point numbers in 32-bit and 64-bit variants.

isize, usize Integers that assume the CPU’s “native” width. For example, in 64-bit CPUs,
usize and isize will be 64-bits wide.

Table 2.2 Multiple bit patterns can represent the same number.

Number Type Bit pattern in memory

20 u32 00000000000000000000000000010100

20 i8 00000000000000000000000000010100

20 f32 01000001101000000000000000000000

2 For the curious and eager, the traits involved here are std::cmp::PartialOrd and std::cmp::PartialEq.

39Numbers
That support does include a few caveats. We’ll look at these conditions in the rest of
this section.

IMPOSSIBLE TO COMPARE DIFFERENT TYPES

Rust’s type safety requirements prevent comparisons between types. For example, this
code does not compile:

 fn main() {
 let a: i32 = 10;
 let b: u16 = 100;

 if a < b {
 println!("Ten is less than one hundred.");
 }
 }

To appease the compiler, we need to use an as operator to cast one of the operands to
the other’s type. The following code shows this type cast: b as i32:

 fn main() {
 let a: i32 = 10;
 let b: u16 = 100;

 if a < (b as i32) {
 println!("Ten is less than one hundred.");
 }
 }

It is safest to cast the smaller type to a larger one (for example, a 16-bit type to a 32-bit
type). This is sometimes referred to as promotion. In this case, we could have demoted
a down to a u16, but such a move is generally more risky.

WARNING Using type casts carelessly will cause your program to behave unex-
pectedly. For example, the expression 300_i32 as i8 returns 44.

In some cases, using the as keyword is too restrictive. It’s possible to regain fuller con-
trol over the type conversion process at the cost of introducing some bureaucracy. The

Table 2.3 Mathematical operators supported by Rust’s numeric types

Operator Rust syntax Example

Less than (<) < 1.0 < 2.0

Greater than (>) > 2.0 > 1.0

Equal to (=) == 1.0 == 1.0

Unequal to () != 1.0 != 2.0

Equal to or less than () <= 1.0 <= 2.0

Equal to greater than or () >= 2.0 >= 1.0

40 CHAPTER 2 Language foundations
following listing shows a Rust method to use instead of the as keyword when the con-
version might fail.

 1 use std::convert::TryInto;
 2
 3 fn main() {
 4 let a: i32 = 10;
 5 let b: u16 = 100;
 6
 7 let b_ = b.try_into()
 8 .unwrap();
 9
10 if a < b_ {
11 println!("Ten is less than one hundred.");
12 }
13 }

Listing 2.5 introduces two new Rust concepts: traits and error handling. On line 1, the
use keyword brings the std::convert::TryInto trait into local scope. This unlocks
the try_into() method of the b variable. We’ll bypass a full explanation of why this
occurs for now. In the meantime, consider a trait as a collection of methods. If you are
from an object-oriented background, traits can be thought of as abstract classes or inter-
faces. If your programming experience is in functional languages, you can think of
traits as type classes.

 Line 7 provides a glimpse of error handling in Rust. b.try_into() returns an i32
value wrapped within a Result. Result is introduced properly in chapter 3. It can
contain either a success value or an error value. The unwrap() method can handle
the success value and returns the value of b as an i32 here. If the conversion between
u16 and i32 were to fail, then calling unsafe() would crash the program. As the
book progresses, you will learn safer ways of dealing with Result rather than risking
the program’s stability!

 A distinguishing characteristic of Rust is that it only allows a type’s methods to be
called when the trait is within local scope. An implicit prelude enables common oper-
ations such as addition and assignment to be used without explicit imports.

TIP To understand what is included in local scope by default, you should
investigate the std::prelude module. Its documentation is available online
at https://doc.rust-lang.org/std/prelude/index.html.

Listing 2.5 The try_into() method converts between types

Floating-point hazards
Floating-point types (f32 and f64, for example) can cause serious errors for the
unwary. There are (at least) two reasons for this:

 These often approximate the numbers that they’re representing. Floating-point
types are implemented in base 2, but we often want to calculate numbers in

Enables try_into() to be
called on those types that have
implemented it (such as u16)

try_into() returns a Result
type that provides access to
the conversion attempt.

https://doc.rust-lang.org/std/prelude/index.html

41Numbers
base 10. This mismatch creates ambiguity. Moreover, although often described
as representing the real numbers, floating point values have a limited preci-
sion. Representing all of the reals would require infinite precision.

 These can represent values that have unintuitive semantics. Unlike integers,
floating-point types have some values that do not play well together (by design).
Formally, these only have a partial equivalence relation. This is encoded in Rust’s
type system. f32 and f64 types only implement the std::cmp::PartialEq
trait, whereas other numeric types also implement std::cmp::Eq.

To prevent these hazards, here are two guidelines to follow:

 Avoid testing floating-point numbers for equality.
 Be wary when results may be mathematically undefined.

Using equality to compare floating-point numbers can be highly problematic. Floating-
point numbers are implemented by computing systems that use binary (base 2) math-
ematics, but are often asked to perform operations on decimal (base 10) numbers.
This poses a problem because many values we care about, such as 0.1, have no
exact representation in binary.a

To illustrate the problem, consider the following snippet. Should it run successfully,
or should it crash? Although the expression that is being evaluated (0.1 + 0.2 = 0.3)
is a mathematical tautology, it crashes on most systems that run it:

fn main() {
 assert!(0.1 + 0.2 == 0.3);
}

But not all. It turns out that the data type can affect whether the program succeeds
or fails. The following code, available at ch2/ch2-add-floats.rs, interrogates the inter-
nal bit patterns of each value to find where the differences lie. It then performs the
test in the previous example against both f32 and f64 types. Only one test passes:

 1 fn main() {
 2 let abc: (f32, f32, f32) = (0.1, 0.2, 0.3);
 3 let xyz: (f64, f64, f64) = (0.1, 0.2, 0.3);
 4
 5 println!("abc (f32)");
 6 println!(" 0.1 + 0.2: {:x}", (abc.0 + abc.1).to_bits());
 7 println!(" 0.3: {:x}", (abc.2).to_bits());
 8 println!();
 9
10 println!("xyz (f64)");
11 println!(" 0.1 + 0.2: {:x}", (xyz.0 + xyz.1).to_bits());
12 println!(" 0.3: {:x}", (xyz.2).to_bits());
13 println!();
14
15 assert!(abc.0 + abc.1 == abc.2);
16 assert!(xyz.0 + xyz.1 == xyz.2);
17 }

assert! crashes the program
unless its argument evaluates
to true.

Runs successfully

Triggers a crash

42 CHAPTER 2 Language foundations
(continued)

When executed, the program successfully generates the short report that follows,
which reveals the error. After that, it crashes. Significantly, it crashes on line 14,
when it compares the result of the f64 values:

abc (f32)
 0.1 + 0.2: 3e99999a
 0.3: 3e99999a

xyz (f64)
 0.1 + 0.2: 3fd3333333333334
 0.3: 3fd3333333333333

thread 'main' panicked at 'assertion failed: xyz.0 + xyz.1 == xyz.2',
➥ch2-add-floats.rs.rs:14:5
note: run with `RUST_BACKTRACE=1` environment variable to display
➥a backtrace

Generally speaking, it is safer to test whether mathematical operations fall within an
acceptable margin of their true mathematical result. This margin is often referred to
as the epsilon.

Rust includes some tolerances to allow comparisons between floating-point values.
These tolerances are defined as f32::EPSILON and f64::EPSILON. To be more pre-
cise, it’s possible to get closer to how Rust is behaving under the hood, as the fol-
lowing small example shows:

fn main() {
 let result: f32 = 0.1 + 0.1;
 let desired: f32 = 0.2;
 let absolute_difference = (desired - result).abs();
 assert!(absolute_difference <= f32::EPSILON);
}

In the example, what actually happens is interesting, but mostly irrelevant. The Rust
compiler actually delegates the comparison to the CPU. Floating-point operations are
implemented using bespoke hardware within the chip.b

Operations that produce mathematically undefined results, such as taking the square
root of a negative number (-42.0.sqrt()), present particular problems. Floating-
point types include “not a number” values (represented in Rust syntax as NAN values)
to handle these cases.

NAN values poison other numbers. Almost all operations interacting with NAN return
NAN. Another thing to be mindful of is that, by definition, NAN values are never equal.
This small program will always crash:

fn main() {
 let x = (-42.0_f32).sqrt();
 assert_eq!(x, x);
}

43Numbers
2.3.4 Rational, complex numbers, and other numeric types

Rust’s standard library is comparatively slim. It excludes numeric types that are often
available within other languages. These include

 Many mathematical objects for working with rational numbers and complex
numbers

 Arbitrary size integers and arbitrary precision floating-point numbers for work-
ing with very large or very small numbers

 Fixed-point decimal numbers for working with currencies

To access these specialized numeric types, you can use the num crate. Crates are Rust’s
name for packages. Open source crates are shared at the https://crates.io repository,
which is where cargo downloads num from.

 Listing 2.6 demonstrates adding two complex numbers together. If you’re unfamil-
iar with the term complex numbers, these are two-dimensional, whereas numbers that you
deal with day to day are one-dimensional. Complex numbers have “real” and “imagi-
nary” parts and are denoted as <real> + <imaginary>i.3 For example, 2.1 + –1.2i is a
single complex number. That’s enough mathematics. Let’s look at the code.

 Here is the recommended workflow to compile and run listing 2.6:

1 Execute the following commands in a terminal:

git clone --depth=1 https:/ /github.com/rust-in-action/code rust-in-action
cd rust-in-action/ch2/ch2-complex
cargo run

2 For those readers who prefer to learn by doing everything by hand, the follow-
ing instructions will achieve the same end result:
a Execute the following commands in a terminal:

cargo new ch2-complex
cd ch2-complex

To program defensively, make use of the is_nan() and is_finite() methods. Induc-
ing a crash, rather than silently proceeding with a mathematical error, allows you to
debug close to what has caused the problem. The following illustrates using the
is_finite() method to bring about this condition:

fn main() {
 let x: f32 = 1.0 / 0.0;
 assert!(x.is_finite());
}

a If this is confusing to think about, consider that many values, such as 1/3 (one third), have no
exact representation within the decimal number system.

b Illegal or undefined operations trigger a CPU exception. You will read about those in chapter 12.

3 Mechanical engineers use j rather than i.

https://crates.io

44 CHAPTER 2 Language foundations
b Add version 0.4 of the num crate into the [dependencies] section of
Cargo.toml. That section will look like this:

[dependencies]
num = "0.4"

c Replace src/main.rs with the source code from listing 2.6 (available at ch2/
ch2-complex/src/main.rs).

d Execute cargo run.

After several lines of intermediate output, cargo run should produce the following
output:

13.2 + 21.02i

 1 use num::complex::Complex;
 2
 3 fn main() {
 4 let a = Complex { re: 2.1, im: -1.2 };
 5 let b = Complex::new(11.1, 22.2);
 6 let result = a + b;
 7
 8 println!("{} + {}i", result.re, result.im)
 9 }

Some points from the listing are worth pausing to consider:

 The use keyword pulls crates into local scope, and the namespace operator (::) restricts
what’s imported. In our case, only a single type is required: Complex.

 Rust does not have constructors; instead, every type has a literal form. You can initialize
types by using the type name (Complex) and assigning their fields (re, im) val-
ues (such as 2.1 or –1.2) within curly braces ({ }).

 Many types implement a new() method for simplicity. This convention, however, is
not part of the Rust language.

 To access fields, Rust programmers use the dot operator (.). For example, the num::
complex::Complex type has two fields: re represents the real part, and im rep-
resents the imaginary part. Both are accessible with the dot operator.

Listing 2.6 also introduces some new commands. It demonstrates two forms of initial-
izing non-primitive data types.

 One is a literal syntax available as part of the Rust language (line 4). The other is
the new() static method, which is implemented by convention only and isn’t defined
as part of the language (line 5). A static method is a function that’s available for a type,
but it’s not an instance of that type.4

Listing 2.6 Calculating values with complex numbers

4 Although Rust is not object-oriented (it’s impossible to create a subclass, for example), Rust makes use of some
terminology from that domain. It’s common to hear of Rust programmers discussing instances, methods, and
objects.

The use keyword brings the
Complex type into local scope.

Every Rust type
has a literal syntax.

Most types implement
a new() static method.

Accesses fields with the dot operator

45Flow control
 The second form is often preferred in real-world code because library authors use
a type’s new() method to set defaults. It also involves less clutter.

We’ve now addressed how to access built-in numeric types and types available from
third-party libraries. We’ll move on to discussing some more of Rust’s features.

2.4 Flow control
Programs execute from top to bottom, except when you don’t want that. Rust has a
useful set of flow control mechanisms to facilitate this. This section provides a brief tour
of the fundamentals.

2.4.1 For: The central pillar of iteration

The for loop is the workhorse of iteration in Rust. Iterating through collections of
things, including iterating over collections that may have infinitely many values, is
easy. The basic form is

for item in container {
 // ...
}

This basic form makes each successive element in container available as item. In this
way, Rust emulates many dynamic languages with an easy-to-use, high-level syntax.
However, it does have some pitfalls.

 Counterintuitively, once the block ends, accessing the container another time
becomes invalid. Even though the container variable remains within local scope, its
lifetime has ended. For reasons that are explained in chapter 4, Rust assumes that con-
tainer is no longer needed once the block finishes.

Shortcut for adding a third-party dependency to a project
I recommend that you install the cargo-edit crate to enable the cargo add subcom-
mand. You can do this with the following code:

$ cargo install cargo-edit
 Updating crates.io index
 Installing cargo-edit v0.6.0
 ...
 Installed package `cargo-edit v0.6.0` (executables `cargo-add`,
 `cargo-rm`, `cargo-upgrade`)

Up to this point, we have manually added dependencies to Cargo.toml. The cargo
add command simplifies this process by editing the file correctly on your behalf:

$ cargo add num
 Updating 'https:/ /github.com/rust-lang/crates.io-index' index
 Adding num v0.4.0 to dependencies

46 CHAPTER 2 Language foundations
 When you want to reuse container later in your program, use a reference. Again,
for reasons that are explained in chapter 4, when a reference is omitted, Rust assumes
that container is no longer needed. To add a reference to the container, prefix it with
an ampersand (&) as this example shows:

for item in &container {
 // ...
}

If you need to modify each item during the loop, you can use a mutable reference by
including the mut keyword:

for item in &mut collection {
 // ...
}

As an implementation detail, Rust’s for loop construct is expanded to method calls by
the compiler. As the following table shows, these three forms of for each map to a dif-
ferent method.

ANONYMOUS LOOPS

When a local variable is not used within a block, by convention, you’ll use an under-
score (_). Using this pattern in conjunction with the _exclusive range syntax_ (n..m)
and the inclusive range syntax (n..=m) makes it clear that the intent is to perform a
loop for a fixed number of times. Here’s an example:

for _ in 0..10 {
 // ...
}

AVOID MANAGING AN INDEX VARIABLE

In many programming languages, it’s common to loop through things by using a tem-
porary variable that’s incremented at the end of each iteration. Conventionally, this
variable is named i (for index). A Rust version of that pattern is

let collection = [1, 2, 3, 4, 5];
for i in 0..collection.len() {
 let item = collection[i];
 // ...
}

Shorthand Equivalent to Access

for item in collection for item in
IntoIterator::into_iter(collection)

Ownership

for item in &collection for item in collection.iter() Read-only

for item in &mut collection for item in collection.iter_mut() Read-write

47Flow control
This is legal Rust. It’s also essential in cases when iterating directly over collection via
for item in collection is impossible. However, it is generally discouraged. The man-
ual approach introduces two problems with this:

 Performance—Indexing values with the collection[index] syntax incurs run-
time costs for bounds checking. That is, Rust checks that index currently exists
within collection as valid data. Those checks are not necessary when iterating
directly over collection. The compiler can use compile-time analysis to prove
that illegal access is impossible.

 Safety—Periodically accessing collection over time introduces the possibility that
it has changed. Using a for loop over collection directly allows Rust to guarantee
that the collection remains untouched by other parts of the program.

2.4.2 Continue: Skipping the rest of the current iteration

The continue keyword operates as you would expect. Here’s an example:

for n in 0..10 {
 if n % 2 == 0 {
 continue;
 }
 // ...
}

2.4.3 While: Looping until a condition changes its state

The while loop proceeds as long as a condition holds. The condition, formally known as
a predicate, can be any expression that evaluates to true or false. This (non-functioning)
snippet takes air quality samples, checking to avoid anomalies:

let mut samples = vec![];

while samples.len() < 10 {
 let sample = take_sample();
 if is_outlier(sample) {
 continue;
 }

 samples.push(sample);
}

USING WHILE TO STOP ITERATING ONCE A DURATION IS REACHED

Listing 2.7 (source code available at ch2/ch2-while-true-incr-count.rs) provides a
working example of while. It isn’t an ideal method for implementing benchmarks,
but can be a useful tool to have in your toolbox. In the listing, while continues to exe-
cute a block when a time limit is not reached.

48 CHAPTER 2 Language foundations
 1 use std::time::{Duration, Instant};
 2
 3 fn main() {
 4 let mut count = 0;
 5 let time_limit = Duration::new(1,0);
 6 let start = Instant::now();
 7
 8 while (Instant::now() - start) < time_limit {
 9 count += 1;
10 }
11 println!("{}", count);
12 }

AVOID WHILE WHEN ENDLESSLY LOOPING

Most Rust programmers avoid the following idiom to express looping forever. The
preferred alternative is to use the loop keyword, explained in the next section.

while true {
 println!("Are we there yet?");
}

2.4.4 Loop: The basis for Rust’s looping constructs

Rust contains a loop keyword for providing more control than for and while. loop
executes a code block again and again, never stopping for a tea (or coffee) break.
loop continues to execute until a break keyword is encountered or the program is ter-
minated from the outside. Here’s an example showing the loop syntax:

loop {
 // ...
}

loop is often seen when implementing long-running servers, as the following example
shows:

loop {
 let requester, request = accept_request();
 let result = process_request(request);
 send_response(requester, result);
}

2.4.5 Break: Aborting a loop

The break keyword breaks out of a loop. In this regard, Rust’s generally operates as
you are used to:

for (x, y) in (0..).zip(0..) {
 if x + y > 100 {
 break;
 }

Listing 2.7 Testing how fast your computer can increment a counter

This form of an import hasn’t been seen
before. It brings the Duration and Instant
types from std::time into local scope.

Creates a Duration that
represents 1 second

Accesses time from
the system’s clock

An Instant minus an Instant
returns a Duration.

49Flow control
 // ...
}

BREAK FROM NESTED LOOPS

You can break out of a nested loop with loop labels.5 A loop label is an identifier pre-
fixed with an apostrophe ('), like this example shows:

'outer: for x in 0.. {
 for y in 0.. {
 for z in 0.. {
 if x + y + z > 1000 {
 break 'outer;
 }

 // ...
 }
 }
}

Rust does not include the goto keyword, which provides the ability to jump to other
parts of the program. The goto keyword can make control flow confusing, and its use
is generally discouraged. One place where it is still commonly used, though, is to jump
to and clean up a section of a function when an error condition is detected. Use loop
labels to enable that pattern.

2.4.6 If, if else, and else: Conditional branching

So far, we’ve indulged in the exciting pursuit of looking for numbers within lists of
numbers. Our tests have involved utilizing the if keyword. Here’s an example:

if item == 42 {
 // ...
}

if accepts any expression that evaluates to a Boolean value (e.g., true or false).
When you want to test multiple expressions, it’s possible to add a chain of if else
blocks. The else block matches anything that has not already been matched. For
example

if item == 42 {
 // ...
} else if item == 132 {
 // ...
} else {
 // ...
}

5 This functionality is also available with continue, but it’s less common.

50 CHAPTER 2 Language foundations
Rust has no concept of “truthy” or “falsey” types. Other languages allow special values
such as 0 or an empty string to stand in for false and for other values to represent
true, but Rust doesn’t allow this. The only value that can be used for true is true, and
for false, use false.

Rust is an expression-based language
In programming languages from this heritage, all expressions return values and
almost everything is an expression. This heritage reveals itself through some con-
structs that are not legal in other languages. In idiomatic Rust, the return keyword
is omitted from functions as shown in the following snippet:

fn is_even(n: i32) -> bool {
 n % 2 == 0
}

For example, Rust programmers assign variables from conditional expressions:

fn main() {
 let n = 123456;
 let description = if is_even(n) {
 "even"
 } else {
 "odd"
 };
 println!("{} is {}", n, description);
}

This can be extended to other blocks including match like this:

fn main() {
 let n = 654321;
 let description = match is_even(n) {
 true => "even",
 false => "odd",
 };
 println!("{} is {}", n, description);
}

Perhaps most surprisingly, the break keyword also returns a value. This can be used
to allow “infinite” loops to return values:

fn main() {
 let n = loop {
 break 123;
 };

 println!("{}", n);
}

Prints "123456
is even"

Prints "654321
is odd"

Prints "123"

51Flow control
2.4.7 Match: Type-aware pattern matching

While it’s possible to use if/else blocks in Rust, match provides a safer alternative.
match warns you if you haven’t considered a relevant alternative. It is also elegant
and concise:

match item {
 0 => {},

 10 ..= 20 => {},

 40 | 80 => {},

 _ => {},
}

match offers a sophisticated and concise syntax for testing multiple possible values.
Some examples are

 Inclusive ranges (10 ..= 20) to match any value within the range.
 A Boolean OR (|) will match when either side matches.
 The underscore (_) to match everything.

match is analogous to the switch keyword in other languages. Unlike C’s switch, how-
ever, match guarantees that all possible options for a type are explicitly handled. Fail-
ing to provide a branch for every possible value triggers a compiler error. Additionally,
a match does not “fall through” to the next option by default. Instead, match returns
immediately when a match is found.

 Listing 2.8 demonstrates a larger example of match. The source code for this list-
ing is in ch2/ch2-match-needles.rs. The code prints these two lines to the screen:

42: hit!
132: hit!

You may wonder what parts of Rust are not expressions and, thus, do not return val-
ues. Statements are not expressions. These appear in Rust in three places:

 Expressions delimited by the semicolon (;)
 Binding a name to a value with the assignment operator (=)
 Type declarations, which include functions (fn) and data types created with

the struct and enum keywords

Formally, the first form is referred to as an expression statement. The last two are
both called declaration statements. In Rust, no value is represented as () (the
“unit” type).

To match a single value, provide the
value. No operator is required.

The ..= syntax matches
an inclusive range.

The vertical bar (|) matches
values on either side of it.

The underscore (_)
matches every value.

52 CHAPTER 2 Language foundations
 1 fn main() {
 2 let needle = 42;
 3 let haystack = [1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862];
 4
 5 for item in &haystack {
 6 let result = match item {
 7 42 | 132 => "hit!",
 8 _ => "miss",
 9 };
10
11 if result == "hit!" {
12 println!("{}: {}", item, result);
13 }
14 }
15 }

The match keyword plays an important role within the Rust language. Many control
structures (like looping) are defined in terms of match under the hood. These really
shine when combined with the Option type that’s discussed in depth in the next
chapter.

 Now that we have taken a good look at defining numbers and working with some
of Rust’s flow control mechanisms, let’s move on to adding structure to programs
with functions.

2.5 Defining functions
Looking back to where the chapter begins, the snippet in listing 2.2 contained a small
function, add(). add takes two i32 values and returns their sum. The following listing
repeats the function.

10 fn add(i: i32, j: i32) -> i32 {
11 i + j
12 }

For the moment, let’s concentrate on the syntax of each of the elements in listing 2.9.
Figure 2.2 provides a visual picture of each of the pieces. Anyone who has pro-
grammed in a strongly-typed programming language should be able to squint their
way through the diagram.

 Rust’s functions require that you specify your parameter’s types and the function’s
return type. This is the foundational knowledge that we’ll need for the majority of our
work with Rust. Let’s put it to use with our first non-trivial program.

Listing 2.8 Using match to match multiple values

Listing 2.9 Defining a function (extract of listing 2.2)

The variable needle
is now redundant.

This match expression returns a value
that can be bound to a variable.

Success! 42 | 132 matches
both 42 and 132.

A wildcard pattern that
matches everything

add() takes two integer parameters and
returns an integer. The two arguments
are bound to the local variables i and j.

53Using references
2.6 Using references
If you have only used a dynamic programming language so far in your career, the syn-
tax and semantics of references can be frustrating. It can be difficult to form a mental
picture of what is happening. That makes it difficult to understand which symbols to
put where. Thankfully, the Rust compiler is a good coach.

 A reference is a value that stands in place for another value. For example, imagine
that variable a is a large array that is costly to duplicate. In some sense, a reference r is
a cheap copy of a. But instead of creating a duplicate, the program stores a’s address
in memory. When the data from a is required, r can be dereferenced to make a available.
The following listing shows the code for this.

fn main() {
 let a = 42;
 let r = &a;
 let b = a + *r;

 println!("a + a = {}", b);
}

References are created with the reference operator (&) and dereferencing occurs with the
dereference operator (*). These operators act as unary operators, meaning that these only
take one operand. One of the limitations of source code written in ASCII text is that
multiplication and dereferencing use the same symbol. Let’s see these in use as part of
a larger example.

 Listing 2.11 searches for a number (the needle defined on line 2) within an array
of numbers (the haystack defined on line 3). The code then prints 42 to the console
when compiled. The code for this listing is in ch2/ch2-needle-in-haystack.rs.

 1 fn main() {
 2 let needle = 0o204;
 3 let haystack = [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147];
 4
 5 for item in &haystack {

Listing 2.10 Creating a reference to a large array

Listing 2.11 Searching for an integer in an array of integers

fn add(i: i32, j: i32) -> i32 {

Thin arrow to indicate return

Identifier Return typeParameters

Keyword
Identifier

Type Type
Identifier

Begin code block
Figure 2.2 Rust’s function
definition syntax

r is a reference to a.

Adds a to a (via dereferencing
r) and assigns it to b

Prints "a + a = 84"

Iterates over references to
elements within haystack

54 CHAPTER 2 Language foundations
 6 if *item == needle {
 7 println!("{}", item);
 8 }
 9 }
10 }

Each iteration changes the value of item to refer to the next item within haystack.
On the first iteration, *item returns 1, and on the last, it returns 21147.

2.7 Project: Rendering the Mandelbrot set
So far, we haven’t learned much Rust, but we already have the tools to create some
interesting pictures of fractals. So let’s do that now with listing 2.12. To begin

1 In a terminal window, execute the following commands to create a project that
can render the Mandelbrot set:
a cd $TMP (or cd %TMP% on MS Windows) to move to a directory that’s not

critical.
b cargo new mandelbrot --vcs none creates a new blank project.
c cd mandelbrot moves into the new project root.
d cargo add num to edit Cargo.toml, adding the num crate as a dependency

(see the sidebar entitled “2.2” in section 2.3.4 for instructions to enable this
cargo feature).

2 Replace src/main.rs with the code in listing 2.12, which you’ll also find in
ch2/ch2-mandelbrot/src/main.rs.

3 Execute cargo run. You should see the Mandelbrot set rendered in the terminal:

 •••*•**•............
 •••***•••...............
 •••***+%+***•................
 ••••••••*$%%%%%*••••••..............
 ••**+*••******%%%*****+•••••*•..........
 •••••*%%+*%%%%%%%%%%%%%%%x*+*+*••...........
 •••••**++%%%%%%%%%%%%%%%%%%%%%%**••............
 •*•••••••••••••••*+%%%%%%%%%%%%%%%%%%%%%%%%%%*•••............
 •••***•••**••••••*+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%+•............
••••*+%*%#xx%****x%%%%%%%%%%%%%%%%%%%%%%%%%%%%%**•.............
••••*++%%%%%%%%%%+*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*•..............
••••••••**+**%%%%%%%%%%%%+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*••..............
%%%*••••..............
••••••••**+**%%%%%%%%%%%%+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*••..............
••••*++%%%%%%%%%%+*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*•..............
••••*+%*%#xx%****x%%%%%%%%%%%%%%%%%%%%%%%%%%%%%**•.............
 •••***•••**••••••*+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%+•............
 •*•••••••••••••••*+%%%%%%%%%%%%%%%%%%%%%%%%%%*•••............
 •••••**++%%%%%%%%%%%%%%%%%%%%%%**••............
 •••••*%%+*%%%%%%%%%%%%%%%x*+*+*••...........
 ••**+*••******%%%*****+•••••*•..........
 ••••••••*$%%%%%*••••••..............
 •••***+%+***•................
 •••***•••...............

The syntax *item
returns the item’s
referent.

55Project: Rendering the Mandelbrot set

the
 in

o
he
 1 use num::complex::Complex;
 2
 3 fn calculate_mandelbrot(
 4
 5 max_iters: usize,
 6 x_min: f64,
 7 x_max: f64,
 8 y_min: f64,
 9 y_max: f64,
10 width: usize,
11 height: usize,
12) -> Vec<Vec<usize>> {
13
14 let mut rows: Vec<_> = Vec::with_capacity(width);
15 for img_y in 0..height {
16
17 let mut row: Vec<usize> = Vec::with_capacity(height);
18 for img_x in 0..width {
19
20 let x_percent = (img_x as f64 / width as f64);
21 let y_percent = (img_y as f64 / height as f64);
22 let cx = x_min + (x_max - x_min) * x_percent;
23 let cy = y_min + (y_max - y_min) * y_percent;
24 let escaped_at = mandelbrot_at_point(cx, cy, max_iters);
25 row.push(escaped_at);
26 }
27
28 all_rows.push(row);
29 }
30 rows
31 }
32
33 fn mandelbrot_at_point(
34 cx: f64,
35 cy: f64,
36 max_iters: usize,
37) -> usize {
38 let mut z = Complex { re: 0.0, im: 0.0 };
39 let c = Complex::new(cx, cy);
40
41 for i in 0..=max_iters {
42 if z.norm() > 2.0 {
43 return i;
44 }
45 z = z * z + c;
46 }
47 max_iters
48 }
49

Listing 2.12 Rendering the Mandelbrot set

Imports the Complex number type from
num crate and its complex submodule

Converts between the output space (a grid of rows
and columns) and a range that surrounds the
Mandelbrot set (a continuous region near (0,0))

If a value has not escaped before reaching
the maximum number of iterations, it’s
considered to be within the Mandelbrot set.

Parameters that specify the space
we’re searching for to look for
members of the set

Parameters that represent the
size of the output in pixels

Creates a container
to house the data
from each row

Iterates row by row,
allowing us to print
the output line by line

Calculates the
proportion of
space covered
our output and
converts that t
points within t
search space

Called at every pixel
(e.g., every row and column
that’s printed to stdout)

Initializes a complex
number at the origin with
real (re) and imaginary
(im) parts at 0.0

Initializes a complex number from the
coordinates provided as function arguments

Checks the escape condition and calculates
the distance from the origin (0, 0), an
absolute value of a complex number

Repeatedly mutates z to check whether
c lies within the Mandelbrot set

As i is no longer in scope, we fall back to max_iters.

56 CHAPTER 2 Language foundations
50 fn render_mandelbrot(escape_vals: Vec<Vec<usize>>) {
51 for row in escape_vals {
52 let mut line = String::with_capacity(row.len());
53 for column in row {
54 let val = match column {
55 0..=2 => ' ',
56 2..=5 => '.',
57 5..=10 => '•',
58 11..=30 => '*',
59 30..=100 => '+',
60 100..=200 => 'x',
61 200..=400 => '$',
62 400..=700 => '#',
63 _ => '%',
64 };
65
66 line.push(val);
67 }
68 println!("{}", line);
69 }
70 }
71
72 fn main() {
73 let mandelbrot = calculate_mandelbrot(1000, 2.0, 1.0, -1.0,
74 1.0, 100, 24);
75
76 render_mandelbrot(mandelbrot);
77 }

So far in this section, we’ve put the basics of Rust into practice. Let’s continue our
exploration by learning how to define functions and types.

2.8 Advanced function definitions
Rust’s functions can get somewhat scarier than the add(i: i32, j: i32) -> i32 from
listing 2.2. To assist those who are reading more Rust source code than writing it, the
following sections provide some extra content.

2.8.1 Explicit lifetime annotations

As a bit of forewarning, allow me to introduce some more complicated notation. As
you read through Rust code, you might encounter definitions that are hard to deci-
pher because those look like hieroglyphs from an ancient civilizations. Listing 2.13
provides an extract from listing 2.14 that shows one such example.

 1 fn add_with_lifetimes<'a, 'b>(i: &'a i32, j: &'b i32) -> i32 {
 2 *i + *j
 3 }

Like all unfamiliar syntax, it can be difficult to know what’s happening at first. This
improves with time. Let’s start by explaining what is happening, and then go on to

Listing 2.13 A function signature with explicit lifetime annotations

57Advanced function definitions
discuss why it is happening. The following bullet points break line 1 of the previous
snippet into its parts:

 fn add_with_lifetimes(...) -> i32 should be familiar to you already. From
this we can infer that add_with_lifetimes() is a function that returns an i32
value.

 <'a, 'b> declares two lifetime variables, 'a and 'b, within the scope of
add_with_lifetimes(). These are normally spoken as lifetime a and lifetime b.

 i: &'a i32 binds lifetime variable 'a to the lifetime of i. The syntax reads as
“parameter i is a reference to an i32 with lifetime a.”

 j: &'b i32 binds the lifetime variable 'b to the lifetime of j. The syntax reads as
“parameter j is a reference to an i32 with lifetime b.”

The significance of binding a lifetime variable to a value probably isn’t obvious.
Underpinning Rust’s safety checks is a lifetime system that verifies that all attempts to
access data are valid. Lifetime annotations allow programmers to declare their intent.
All values bound to a given lifetime must live as long as the last access to any value
bound to that lifetime.

 The lifetime system usually works unaided. Although every parameter has a life-
time, these checks are typically invisible as the compiler can infer most lifetimes by
itself.6 But the compiler needs assistance in difficult cases. Functions that accept multi-
ple references as arguments or return a reference are often when the compiler will
request assistance via an error message.

 No lifetime annotations are required when calling a function. When used in a
complete example as in the next listing, you can see lifetime annotations at the func-
tion definition (line 1), but not when it’s used (line 8). The source code for the listing
is in ch2-add-with-lifetimes.rs.

 1 fn add_with_lifetimes<'a, 'b>(i: &'a i32, j: &'b i32) -> i32 {
 2 *i + *j
 3 }
 4
 5 fn main() {
 6 let a = 10;
 7 let b = 20;
 8 let res = add_with_lifetimes(&a, &b);
 9
10 println!("{}", res);
11 }

On line 2, *i + *j adds together the referent values held by the i and j variables. It’s
common to see lifetime parameters when using references. While Rust can infer lifetimes

6 Omitting lifetime annotations is formally referred to as lifetime elision.

Listing 2.14 Type signature of a function with lifetime explicit annotations

Adds the values referred to by
i and j rather than adding the
references directly

&10 and &20 mean reference
10 and 20, respectively. No
lifetime notation is required
when calling a function.

58 CHAPTER 2 Language foundations
in other cases, references require the programmer to specify the intent. Using two life-
time parameters (a and b) indicates that the lifetimes of i and j are decoupled.

NOTE Lifetime parameters are a way of providing control to the programmer
while maintaining high-level code.

2.8.2 Generic functions

Another special case of function syntax appears when programmers write Rust func-
tions to handle many possible input types. So far, we have seen functions that accept
32-bit integers (i32). The following listing shows a function signature that can be
called by many input types as long as these are all the same.

fn add<T>(i: T, j: T) -> T {
 i + j

}

Capital letters in place of a type indicate a generic type. Conventionally, the variables T,
U, and V are used as placeholder values, but this is arbitrary. E is often used to denote
an error type. We’ll look at error handling in detail in chapter 3.

 Generics enable significant code reuse and can greatly increase the usability of a
strongly-typed language. Unfortunately, listing 2.15 doesn’t compile as is. The Rust
compiler complains that it cannot add two values of any type T together. The following
shows the output produced when attempting to compile listing 2.15:

error[E0369]: cannot add `T` to `T`
 --> add.rs:2:5
 |
2 | i + j
 | - ^ - T
 | |
 | T
 |
help: consider restricting type parameter `T`
 |
1 | fn add<T: std::ops::Add<Output = T>>(i: T, j: T) -> T {
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^

error: aborting due to previous error

For more information about this error, try `rustc --explain E0369`.

This issue arises because T really means any type at all, even types where addition is
not supported. Figure 2.3 provides a visual representation of the problem. Listing 2.15
attempts to refer to the outer ring, whereas addition is only supported by types within
the inner ring.

Listing 2.15 Type signature of a generic function

The type variable T is introduced with angle brackets
(<T>). This function takes two arguments of the
same type and returns a value of that type.

59Advanced function definitions
How do we specify that type T must implement addition? Answering this requires intro-
ducing some new terminology.

 All of Rust’s operators, including addition, are defined within traits. To require
that type T must support addition, we include a trait bound alongside the type variable
in the function’s definition. The following listing gives an example of this syntax.

fn add<T: std::ops::Add<Output = T>>(i: T, j: T) -> T {
 i + j
}

The fragment <T: std::ops::Add<Output = T>> says that T must implement
std::ops::Add. Using a single type variable T with the trait bound ensures that argu-
ments i and j, as well as the result type, are the same type and that their type supports
addition.

 What is a trait? A trait is a language feature that is analogous to an interface, proto-
col, or contract. If you have a background in object-oriented programming, consider
a trait to be an abstract base class. If you have a background in functional program-
ming, Rust’s traits are close to Haskell’s type classes. For now, it’s enough to say that
traits enable types to advertise that they are using common behavior.

 All of Rust’s operations are defined with traits. For example, the addition operator
(+) is defined as the std::ops::Add trait. Traits are properly introduced in chapter 3
and are progressively explained in depth during the course of the book.

 To reiterate: all of Rust’s operators are syntactic sugar for a trait’s methods. Rust
supports operator overloading this way. During the compilation process, a + b is con-
verted to a.add(b).

 Listing 2.17 is a full example that demonstrates that generic functions can be
called by multiple types. The listing prints these three lines to the console:

4.6
30
15s

Listing 2.16 Type signature of a generic function with trait bounds

All types

Types that support
addition by implementing
std::ops::Add

Figure 2.3 Only a subset of types have
implement operators. When creating
generic functions that include such an
operator, that operation’s trait must be
included as a trait bound.

60 CHAPTER 2 Language foundations
 1 use std::ops::{Add};
 2 use std::time::{Duration};
 3
 4 fn add<T: Add<Output = T>>(i: T, j: T) -> T {
 5 i + j
 6 }
 7
 8 fn main() {
 9 let floats = add(1.2, 3.4);
10 let ints = add(10, 20);
11 let durations = add(
12 Duration::new(5, 0),
13 Duration::new(10, 0)
14);
15
16 println!("{}", floats);
17 println!("{}", ints);
18 println!("{:?}", durations);
19
20 }

As you can see, function signatures can become somewhat convoluted. Interpreting
these can take some patience. Hopefully, you now have the tools to break the pieces
apart in case you get stuck down the track. Here are a few principles that should assist
you when reading Rust code:

 Terms in lowercase (i, j) denote variables.
 Single uppercase letters (T) denote generic type variables.
 Terms beginning with uppercase (Add) are either traits or concrete types, such

as String or Duration.
 Labels ('a) denote lifetime parameters.

2.9 Creating grep-lite
We’ve spent most of the chapter discussing numbers. It’s time for another practical
example. We’ll use it to learn a little bit about how Rust handles text.

 Listing 2.18 is our first iteration of grep-lite. The code for this program is in the
ch2-str-simple-pattern.rs file. Its hard-coded parameters restrict flexibility somewhat, but
these are useful illustrations of string literals. The code prints a line to the console:

dark square is a picture feverishly turned--in search of what?

 1 fn main() {
 2 let search_term = "picture";

Listing 2.17 A generic function with a type variable and trait bounds

Listing 2.18 Searching for a simple pattern within lines of a string

Brings the Add trait from
std::ops into local scope

Brings the Duration
type from std::time
into local scope

The arguments to add()
can accept any type
that implements
std::ops::Add.

Calls add() with
floating-point values

Calls add() with
integer values

Calls add() with Duration values, representing
a duration between two points in time

Because std::time::Duration does
not implement the std::fmt::Display
trait, we can fall back to requesting
std::fmt::Debug.

61Creating grep-lite
 3 let quote = "\
 4 Every face, every shop, bedroom window, public-house, and
 5 dark square is a picture feverishly turned--in search of what?
 6 It is the same with books.
 7 What do we seek through millions of pages?";
 8
 9 for line in quote.lines() {
10 if line.contains(search_term) {
11 println!("{}", line);
12 }
13 }
14 }

As you can see, Rust’s strings can do quite a lot by themselves. Some features of list-
ing 2.18 that are worth highlighting include the following. From here, we’ll expand
the functionality of our proto-application:

 Line 9 (quote.lines()) demonstrates iterating line-by-line in a platform-
independent manner.

 Line 10 (line.contains()) demonstrates searching for text using the method
syntax.

Navigating Rust’s rich collection of string types
Strings are complicated for newcomers to Rust. Implementation details tend to
bubble up from below and make comprehension difficult. How computers represent
text is complicated, and Rust chooses to expose some of that complexity. This
enables programmers to have full control but does place a burden on those learning
the language.

String and &str both represent text, yet are distinct types. Interacting with values
from both types can be an annoying exercise at first as different methods are
required to perform similar actions. Prepare yourself for irritating type errors as your
intuition develops. Until that intuition develops, however, you will usually have fewer
issues if you convert your data to the String type.

A String is (probably) closest to what you know as a string type from other lan-
guages. It supports familiar operations such as concatenation (joining two strings
together), appending new text onto an existing string, and trimming whitespace.

str is a high-performance, relatively feature-poor type. Once created, str values can-
not expand or shrink. In this sense, these are similar to interacting with a raw memory
array. Unlike a raw memory array, though, str values are guaranteed to be valid UTF-8
characters.

str is usually seen in this form: &str. A &str (pronounced string slice) is a small type
that contains a reference to str data and a length. Attempting to assign a variable
to type str will fail. The Rust compiler wants to create fixed-sized variables within a
function’s stack frame. As str values can be of arbitrary length, these can only be
stored as local variables by reference.

Multilined strings do not
require special syntax.
The \ character on line 3
escapes the new line.

lines() returns an iterator over quote
where each iteration is a line of text. Rust
uses each operating system’s conventions
on what constitutes a new line.

62 CHAPTER 2 Language foundations
Let’s start adding functionality to grep-lite by printing the line number along with the
match. This is equivalent to the -n option within the POSIX.1-2008 standard for the
grep utility (http://mng.bz/ZPdZ).

 Adding a few lines to our previous example, we now see the following line printed
to the screen. Listing 2.19 shows the code that adds this functionality, which you’ll
find in ch2/ch2-simple-with-linenums.rs:

2: dark square is a picture feverishly turned--in search of what?

(continued)

For those readers that have prior experience with systems programming, String
uses dynamic memory allocation to store the text that it represents. Creating &str
values avoids a memory allocation.

String is an owned type. Ownership has a particular meaning within Rust. An owner
is able to make any changes to the data and is responsible for deleting values that
it owns when it leaves scope (this is fully explained in chapter 3). A &str is a bor-
rowed type. In practical terms, this means that &str can be thought of as read-only
data, whereas String is read-write.

String literals (e.g., "Rust in Action") have the type &str. The full type signature
including the lifetime parameter is &'static str. The 'static lifetime is somewhat
special. It too owes its name to implementation details. Executable programs can
contain a section of memory that is hard-coded with values. That section is known as
static memory because it is read-only during execution.

Some other types may be encountered in your travels. Here’s a short list:a

 char—A single character encoded as 4 bytes. The internal representation of
char is equivalent to UCS-4/UTF-32. This differs from &str and String,
which encodes single characters as UTF-8. Conversion does impose a pen-
alty, but it means that char values are of fixed-width and are, therefore, eas-
ier for the compiler to reason about. Characters encoded as UTF-8 can span
1 to 4 bytes.

 [u8]—A slice of raw bytes, usually found when dealing with streams of
binary data.

 Vec<u8>—A vector of raw bytes, usually created when consuming [u8] data.
String is to Vec<u8> as str is to [u8].

 std::ffi::OSString—A platform-native string. It’s behavior is close to String
but without a guarantee that it’s encoded as UTF-8 and that it won’t contain
the zero byte (0x00).

 std::path::Path—A string-like type that is dedicated to handling filesys-
tem paths.

Fully understanding the distinction between String and &str requires knowledge of
arrays and vectors. Textual data is similar to these two types with added convenience
methods applied over the top.

a Unfortunately, this is not an exhaustive list. Specific use cases sometimes require special handling.

http://mng.bz/ZPdZ

63Making lists of things with arrays, slices, and vectors
 1 fn main() {
 2 let search_term = "picture";
 3 let quote = "\
 4 Every face, every shop, bedroom window, public-house, and
 5 dark square is a picture feverishly turned--in search of what?
 6 It is the same with books. What do we seek through millions of pages?";
 7 let mut line_num: usize = 1;
 8
 9 for line in quote.lines() {
10 if line.contains(search_term) {
11 println!("{}: {}", line_num, line);
12 }
13 line_num += 1;
14 }
15 }

Listing 2.20 shows a more ergonomic approach to incrementing i. The output is the
same, but here the code makes use of the enumerate() method and method chaining.
enumerate() takes an iterator I, returning another (N, I), where N is a number that
starts at 0 and increments by 1 each iteration. The source code for this listing can be
found in ch2/ch2-simple-with-enumerate.rs.

 1 fn main() {
 2 let search_term = "picture";
 3 let quote = "\
 4 Every face, every shop, bedroom window, public-house, and
 5 dark square is a picture feverishly turned--in search of what?
 6 It is the same with books. What do we seek through millions of pages?";
 7
 8 for (i, line) in quote.lines().enumerate() {
 9 if line.contains(search_term) {
10 let line_num = i + 1;
11 println!("{}: {}", line_num, line);
12 }
13 }
14 }

Another feature of grep that is extremely useful is to print some context before and
after the line that matches. In the GNU grep implementation, this is the -C NUM switch.
To add support for that feature in grep-lite, we need to be able to create lists.

2.10 Making lists of things with arrays, slices, and vectors
Lists of things are incredibly common. The two types that you will work with most
often are arrays and vectors. Arrays are fixed-width and extremely lightweight. Vectors
are growable but incur a small runtime penalty because of the extra bookkeeping that

Listing 2.19 Manually incrementing an index variable

Listing 2.20 Automatically incrementing an index variable

A backslash escapes the newline
character in the string literal.

Declares line_num as mutable via
let mut and initializes it with 1

Updates the println!
macro to allow for both
values to be printedIncrements

line_num in place

Because lines()
returns an iterator,
it can be chained
with enumerate().

Performs addition to calculate the line
number, avoiding calculations at every step

64 CHAPTER 2 Language foundations
these do. To understand the underlying mechanisms with text data in Rust, it helps to
have a cursory understanding of what is happening.

 The goal of this section is to support printing out n lines of context that sur-
round a match. To get there, we need to segue somewhat and explain more fully
arrays, slices, and vectors. The most useful type for this exercise is the vector. To
learn about vectors, though, we need to start by learning about its two simpler cous-
ins: arrays and slices.

2.10.1 Arrays

An array, at least as far as Rust is concerned, is a tightly-packed collection of the same
thing. It’s possible to replace items within an array, but its size cannot change. Because
variable-length types like String add a degree of complication, we’ll revert back to dis-
cussing numbers for a little while.

 Creating arrays takes two forms. We can provide a comma-delimited list within
square brackets (for example, [1, 2, 3]) or a repeat expression, where you furnish two
values delimited by a semicolon (for example, [0; 100]). The value on the left (0) is
repeated by the number of times on the right (100). Listing 2.21 shows each varia-
tion on lines 2–5. The source code for this listing is in the ch2-3arrays.rs file. It prints
these four lines to the console:

[1, 2, 3]: 1 + 10 = 11 2 + 10 = 12 3 + 10 = 13 ([1, 2, 3] = 6)
[1, 2, 3]: 1 + 10 = 11 2 + 10 = 12 3 + 10 = 13 ([1, 2, 3] = 6)
[0, 0, 0]: 0 + 10 = 10 0 + 10 = 10 0 + 10 = 10 ([0, 0, 0] = 0)
[0, 0, 0]: 0 + 10 = 10 0 + 10 = 10 0 + 10 = 10 ([0, 0, 0] = 0)

 1 fn main() {
 2 let one = [1, 2, 3];
 3 let two: [u8; 3] = [1, 2, 3];
 4 let blank1 = [0; 3];
 5 let blank2: [u8; 3] = [0; 3];
 6
 7 let arrays = [one, two, blank1, blank2];
 8
 9 for a in &arrays {
10 print!("{:?}: ", a);
11 for n in a.iter() {
12 print!("\t{} + 10 = {}", n, n+10);
13 }
14
15 let mut sum = 0;
16 for i in 0..a.len() {
17 sum += a[i];
18 }
19 println!("\t({:?} = {})", a, sum);
20 }
21 }

Listing 2.21 Defining arrays and iterating over their elements

65Making lists of things with arrays, slices, and vectors
Arrays are a simple data structure from the machine’s point of view. These are a con-
tiguous block of memory with elements of a uniform type. The simplicity is still some-
what deceptive. Arrays can cause a few learning difficulties for newcomers:

 The notation can be confusing.[T; n] describes an array’s type, where T is the ele-
ments’ type and n is a non-negative integer. [f32; 12] denotes an array of 12
32-bit floating-point numbers. It’s easy to get confused with slices [T], which do
not have a compile-time length.

 [u8; 3] is a different type than [u8; 4]. The size of the array matters to the type
system.

 In practice, most interaction with arrays occurs via another type called a slice ([T]). The
slice is itself interacted with by reference (&[T]). And to add some linguistic
confusion into the mix, both slices and references to slices are called slices.

Rust maintains its focus on safety. Array indexing is bounds checked. Requesting an
item that’s out of bounds crashes (panics in Rust terminology) the program rather
than returning erroneous data.

2.10.2 Slices

Slices are dynamically sized array-like objects. The term dynamically sized means that
their size is not known at compile time. Yet, like arrays, these don’t expand or contract.
The use of the word dynamic in dynamically sized is closer in meaning to dynamic typing
rather than movement. The lack of compile-time knowledge explains the distinction in
the type signature between an array ([T; n]) and a slice ([T]).

 Slices are important because it’s easier to implement traits for slices than arrays.
Traits are how Rust programmers add methods to objects. As [T; 1], [T; 2], …, [T; n]
are all different types, implementing traits for arrays can become unwieldy. Creating
a slice from an array is easy and cheap because it doesn’t need to be tied to any spe-
cific size.

 Another important use for slices is their ability to act as a view on arrays (and other
slices). The term view here is taken from database technology and means that slices
can gain fast, read-only access to data without needing to copy anything around.

 The problem with slices is that Rust wants to know the size of every object in your
program, and slices are defined as not having a compile-time size. References to the
rescue. As mentioned in the discussion about the use of the term dynamically sized,
slice size is fixed in memory. These are made up of two usize components (a pointer
and a length). That’s why you typically see slices referred to in their referenced form,
&[T] (like string slices that take the notation &str).

NOTE Don’t worry too much about the distinctions between arrays and slices
yet. In practice, it’s not material. Each term is an artifact of implementation
details. Those implementation details are important when dealing with
performance-critical code but not when learning the basics of the language.

66 CHAPTER 2 Language foundations
2.10.3 Vectors

Vectors (Vec<T>) are growable lists of T. Using vectors is extremely common in Rust
code. These incur a small runtime penalty compared to arrays because of the extra
bookkeeping that must be done to enable their size to change over time. But vectors
almost always make up for this with their added flexibility.

 The task at hand is to expand the feature set of the grep-lite utility. Specifically, we
want the ability to store n lines of context around a match. Naturally, there are many
ways to implement such a feature.

 To minimize code complexity, we’ll use a two-pass strategy. In the first pass, we’ll
tag lines that match. During the second pass, we’ll collect lines that are within n lines
of each of the tags.

 The code in listing 2.22 (available at ch2/ch2-introducing-vec.rs) is the longest
you’ve seen so far. Take your time to digest it.

 The most confusing syntax in the listing is probably Vec<Vec<(usize, String)>>,
which appears on line 15. Vec<Vec<(usize, String)>> is a vector of vectors (e.g.,
Vec<Vec<T>>), where T is a pair of values of type (usize, String). (usize, String) is
a tuple that we’ll use to store line numbers along with the text that’s a near match.
When the needle variable on line 3 is set to "oo", the following text is printed to
the console:

1: Every face, every shop,
2: bedroom window, public-house, and
3: dark square is a picture
4: feverishly turned--in search of what?
3: dark square is a picture
4: feverishly turned--in search of what?
5: It is the same with books.
6: What do we seek
7: through millions of pages?

 1 fn main() {
 2 let ctx_lines = 2;
 3 let needle = "oo";
 4 let haystack = "\
 5 Every face, every shop,
 6 bedroom window, public-house, and
 7 dark square is a picture
 8 feverishly turned--in search of what?
 9 It is the same with books.
10 What do we seek
11 through millions of pages?";
12
13 let mut tags: Vec<usize> = vec![];
14 let mut ctx: Vec<Vec<(
15 usize, String)>> = vec![];
16
17 for (i, line) in haystack.lines().enumerate() {

Listing 2.22 Enabling context lines to be printed out with a Vec<Vec<T>>

tags holds line
numbers where
matches occur.

ctx contains a vector
per match to hold the
context lines.

Iterates through the
lines, recording line
numbers where
matches are
encountered

67Including third-party code
18 if line.contains(needle) {
19 tags.push(i);
20
21 let v = Vec::with_capacity(2*ctx_lines + 1);
22 ctx.push(v);
23 }
24 }
25
26 if tags.is_empty() {
27 return;
28 }
29
30 for (i, line) in haystack.lines().enumerate() {
31 for (j, tag) in tags.iter().enumerate() {
32 let lower_bound =
33 tag.saturating_sub(ctx_lines);
34 let upper_bound =
35 tag + ctx_lines;
36
37 if (i >= lower_bound) && (i <= upper_bound) {
38 let line_as_string = String::from(line);
39 let local_ctx = (i, line_as_string);
40 ctx[j].push(local_ctx);
41 }
42 }
43 }
44
45 for local_ctx in ctx.iter() {
46 for &(i, ref line) in local_ctx.iter() {
47 let line_num = i + 1;
48 println!("{}: {}", line_num, line);
49 }
50 }
51 }

Vec<T> performs best when you can provide it with a size hint via Vec::with_
capacity(). Providing an estimate minimizes the number of times memory will need
to be allocated from the OS.

NOTE When considering this approach in real text files, encodings can cause
issues. String is guaranteed to be UTF-8. Naively reading in a text file to a
String causes errors if invalid bytes are detected. A more robust approach is
to read in data as [u8] (a slice of u8 values), then decode those bytes with
help from your domain knowledge.

2.11 Including third-party code
Incorporating third-party code is essential to productive Rust programming. Rust’s
standard library tends to lack many things that other languages provide, like random
number generators and regular expression support. That means it’s common to
incorporate third-party crates into your project. To get your feet wet, let’s start with
the regex crate.

Vec::with_capacity(n)
reserves space for n
items. No explicit type
signature is required
as it can be inferred
via the definition of
ctx on line 15.

When there are no
matches, exits early

For each tag, at every
line, checks to see if
we are near a match.
When we are, adds
that line to the
relevant Vec<T>
within ctx.

saturating_sub() is
subtraction that returns
0 on integer underflow
rather than crashing the
program (CPUs don’t like
attempting to send usize
below zero).

Copies line into a new
String and stores that
locally for each match

ref line informs the compiler
that we want to borrow this
value rather than move it.
These two terms are explained
fully in later chapters.

68 CHAPTER 2 Language foundations
 Crates are the name the Rust community uses where others use terms such as pack-
age, distribution, or library. The regex crate provides the ability to match regular
expressions rather than simply looking for exact matches.

 To use third-party code, we’ll rely on the cargo command-line tool. Follow these
instructions:

1 Open a command prompt.
2 Move to a scratch directory with cd /tmp (cd %TMP% on MS Windows).
3 Run cargo new grep-lite --vcs none. It produces a short confirmation message:

Created binary (application) `grep-lite` package

4 Run cd grep-lite to move into the project directory.
5 Execute cargo add regex@1 to add version 1 of the regex crate as a dependency.

This alters the file /tmp/grep-lite/Cargo.toml. If cargo add is unavailable for
you, see the sidebar, “2.2,” in section 2.3.4.

6 Run cargo build. You should see output fairly similar to the following begin
to appear:

 Updating crates.io index
Downloaded regex v1.3.6
 Compiling lazy_static v1.4.0
 Compiling regex-syntax v0.6.17
 Compiling thread_local v1.0.1
 Compiling aho-corasick v0.7.10
 Compiling regex v1.3.6
 Compiling grep-lite v0.1.0 (/tmp/grep-lite)
 Finished dev [unoptimized + debuginfo] target(s) in 4.47s

Now that you have the crate installed and compiled, let’s put it into action. First, we’ll
support searching for exact matches in listing 2.23. Later, in listing 2.26, the project
grows to support regular expressions.

2.11.1 Adding support for regular expressions

Regular expressions add great flexibility to the patterns that we are able to search for.
The following listing is a copy of an early example that we’ll modify.

fn main() {
 let search_term = "picture";
 let quote = "Every face, every shop, bedroom window, public-house, and
dark square is a picture feverishly turned--in search of what?
It is the same with books. What do we seek through millions of pages?";

 for line in quote.lines() {
 if line.contains(search_term) {
 println!("{}", line);

Listing 2.23 Matching on exact strings with the contains() method

Implements a contains()
method that searches for
a substring

69Including third-party code
 }
 }
}

Make sure that you have updated grep-lite/Cargo.toml to include regex as a depen-
dency as described in the previous section. Now, open grep-lite/src/main.rs in a text
editor and fill it in with the code in the following listing. The source code for this list-
ing is available in ch2/ch2-with-regex.rs.

use regex::Regex;

fn main() {
 let re = Regex::new("picture").unwrap();

 let quote = "Every face, every shop, bedroom window, public-house, and
dark square is a picture feverishly turned--in search of what?
It is the same with books. What do we seek through millions of pages?";

 for line in quote.lines() {
 let contains_substring = re.find(line);
 match contains_substring {

 Some(_) => println!("{}", line),
 None => (),
 }
 }
}

Open a command prompt and move to the root directory of your grep-lite project.
Executing cargo run should produce output similar to the following text:

$ cargo run
 Compiling grep-lite v0.1.0 (file:/ / /tmp/grep-lite)
 Finished dev [unoptimized + debuginfo] target(s) in 0.48s
 Running `target/debug/grep-lite`
dark square is a picture feverishly turned--in search of what?

Admittedly, the code within listing 2.24 hasn’t taken significant advantage of its new-
found regular expression capabilities. Hopefully, you’ll have the confidence to be able
to slot those into some of the more complex examples.

2.11.2 Generating the third-party crate documentation locally

Documentation for third-party crates is typically available online. Still, it can be useful
to know how to generate a local copy in case the internet fails you:

1 Move to the root of the project directory in a terminal: /tmp/grep-lite or
%TMP%\grep-lite

Listing 2.24 Searching for patterns with regular expressions

Brings the Regex type from the
regex crate into local scope

unwrap() unwraps a Result,
crashing if an error occurs.
Handling errors more robustly
is discussed in depth later in
the book.

Replaces the contains() method
from listing 2.23 with a match block
that requires that we handle all
possible cases

Some(T) is the positive case of an
Option, meaning that re.find() was
successful: it matches all values.

None is the negative
case of an Option; () can
be thought of as a null
placeholder value here.

70 CHAPTER 2 Language foundations
2 Execute cargo doc. It will inform you of its progress in the console:

$ cargo doc
 Checking lazy_static v1.4.0
 Documenting lazy_static v1.4.0
 Checking regex-syntax v0.6.17
 Documenting regex-syntax v0.6.17
 Checking memchr v2.3.3
 Documenting memchr v2.3.3
 Checking thread_local v1.0.1
 Checking aho-corasick v0.7.10
 Documenting thread_local v1.0.1
 Documenting aho-corasick v0.7.10
 Checking regex v1.3.6
 Documenting regex v1.3.6
 Documenting grep-lite v0.1.0 (file:/ / /tmp/grep-lite)
 Finished dev [unoptimized + debuginfo] target(s) in 3.43s

Congratulations. You have now created HTML documentation. By opening /tmp/grep-
lite/target/doc/grep_lite/index.html in a web browser (also try cargo doc --open from
the command line), you’ll be able to view the documentation for all the crates that
yours depend on. It’s also possible to inspect the output directory to take a look at
what is available to you:

$ tree -d -L 1 target/doc/
target/doc/
├── aho_corasick
├── grep_lite
├── implementors
├── memchr
├── regex
├── regex_syntax
├── src
└── thread_local

2.11.3 Managing Rust toolchains with rustup

rustup is another handy command-line tool, along with cargo. Where cargo manages
projects, rustup manages your Rust installation(s). rustup cares about Rust toolchains
and enables you to move between versions of the compiler. This means it’s possible to
compile your projects for multiple platforms and experiment with nightly features of
the compiler while keeping the stable version nearby.

 rustup also simplifies accessing Rust’s documentation. Typing rustup doc opens
your web browser to a local copy of Rust’s standard library.

2.12 Supporting command-line arguments
Our program is rapidly increasing its feature count. Yet, there is no way for any
options to be specified. To become an actual utility, grep-lite needs to be able to inter-
act with the world.

71Supporting command-line arguments
 Sadly, though, Rust has a fairly tight standard library. As with regular expressions,
another area with relatively minimalist support is handling command-line arguments.
A nicer API is available through a third-party crate called clap (among others).

 Now that we’ve seen how to bring in third-party code, let’s take advantage of that
to enable users of grep-lite to choose their own pattern. (We’ll get to choosing their
own input source in the next section.) First, add clap as a dependency in your
Cargo.toml:

$ cargo add clap@2
 Updating 'https:/ /github.com/rust-lang/crates.io-index' index
 Adding clap v2 to dependencies

You can confirm that the crate has been added to your project by inspecting its
Cargo.toml file.

[package]
name = "grep-lite"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]

[dependencies]
regex = "1"
clap = "2"

Now, adjust src/main.rs.

 1 use regex::Regex;
 2 use clap::{App,Arg};
 3
 4 fn main() {
 5 let args = App::new("grep-lite")
 6 .version("0.1")
 7 .about("searches for patterns")
 8 .arg(Arg::with_name("pattern")
 9 .help("The pattern to search for")
10 .takes_value(true)
11 .required(true))
12 .get_matches();
13
14 let pattern = args.value_of("pattern").unwrap();
15 let re = Regex::new(pattern).unwrap();
16
17 let quote = "Every face, every shop, bedroom window, public-house, and
18 dark square is a picture feverishly turned--in search of what?
19 It is the same with books. What do we seek through millions of pages?";
20
21 for line in quote.lines() {
22 match re.find(line) {

Listing 2.25 Adding a dependency to grep-lite/Cargo.toml

Listing 2.26 Editing grep-lite/src/main.rs

Brings clap::App and
clap::Arg objects into
local scope

Incrementally builds a command
argument parser, where each
argument takes an Arg. In our
case, we only need one.

Extracts the
pattern argument

72 CHAPTER 2 Language foundations
23 Some(_) => println!("{}", line),
24 None => (),
25 }
26 }
27 }

With your project updated, executing cargo run should set off a few lines in your
console:

$ cargo run
 Finished dev [unoptimized + debuginfo] target(s) in 2.21 secs
 Running `target/debug/grep-lite`
error: The following required arguments were not provided:
 <pattern>

USAGE:
 grep-lite <pattern>

For more information try --help

The error is due to the fact that we haven’t passed sufficient arguments through to our
resulting executable. To pass arguments through, cargo supports some special syntax.
Any arguments appearing after -- are sent through to the resulting executable binary:

$ cargo run -- picture
 Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
 Running `target/debug/grep-lite picture`
dark square is a picture feverishly turned--in search of what?

But clap does more than provide parsing. It also generates usage documentation on
your behalf. Running grep-lite --help provides an expanded view:

$./target/debug/grep-lite --help
grep-lite 0.1
searches for patterns

USAGE:
 grep-lite <pattern>

FLAGS:
 -h, --help Prints help information
 -V, --version Prints version information

ARGS:
 <pattern> The pattern to search for

2.13 Reading from files
Searching for text wouldn’t be complete without being able to search within files. File
I/O can be surprisingly finicky and so has been left until last.

 Before adding this functionality to grep-lite, let’s take a look at a standalone example
in listing 2.27. The code for this listing is in the ch2-read-file.rs file. The general pattern

73Reading from files
is to open a File object, then wrap that in a BufReader. BufReader takes care of provid-
ing buffered I/O, which can reduce system calls to the OS if the hard disk is congested.

 1 use std::fs::File;
 2 use std::io::BufReader;
 3 use std::io::prelude::*;
 4
 5 fn main() {
 6 let f = File::open("readme.md").unwrap();
 7 let mut reader = BufReader::new(f);
 8
 9 let mut line = String::new();
10
11 loop {
12 let len = reader.read_line(&mut line)
13 .unwrap();
14 if len == 0 {
15 break
16 }
17
18 println!("{} ({} bytes long)", line, len);
19
20 line.truncate(0);
21 }
22 }

Manually looping through a file can be cumbersome, despite its usefulness in some
cases. For the common case of iterating through lines, Rust provides a helper iterator
as the following listing shows. The source code for this listing is in the file ch2/ch2-
bufreader-lines.rs.

 1 use std::fs::File;
 2 use std::io::BufReader;
 3 use std::io::prelude::*;
 4
 5 fn main() {
 6 let f = File::open("readme.md").unwrap();
 7 let reader = BufReader::new(f);
 8
 9 for line_ in reader.lines() {
10 let line = line_.unwrap();
11 println!("{} ({} bytes long)", line, line.len());
12 }
13 }

We’re now in a position to add reading from a file into grep-lite’s feature list. The fol-
lowing listing creates a complete program that takes a regular expression pattern and
an input file as arguments.

Listing 2.27 Reading a file manually line by line

Listing 2.28 Reading a file line by line via BufReader::lines()

Creates a File object that
requires a path argument
and error handling if the file
does not exist. This program
crashes if a readme.md is not
present.

Reuses a single String
object over the lifetime
of the program

Because reading from disk can fail,
we need to explicitly handle this. In
our case, errors crash the program.

Shrinks the String back to length 0,
preventing lines from persisting
into the following ones

A subtle behavior change
occurs here. BufReader::lines()
removes the trailing newline
character from each line.

Unwraps the Result, but
at the risk of crashing the
program if an error occurs

74 CHAPTER 2 Language foundations
 1 use std::fs::File;
 2 use std::io::BufReader;
 3 use std::io::prelude::*;
 4 use regex::Regex;
 5 use clap::{App,Arg};
 6
 7 fn main() {
 8 let args = App::new("grep-lite")
 9 .version("0.1")
10 .about("searches for patterns")
11 .arg(Arg::with_name("pattern")
12 .help("The pattern to search for")
13 .takes_value(true)
14 .required(true))
15 .arg(Arg::with_name("input")
16 .help("File to search")
17 .takes_value(true)
18 .required(true))
19 .get_matches();
20
21 let pattern = args.value_of("pattern").unwrap();
22 let re = Regex::new(pattern).unwrap();
23
24 let input = args.value_of("input").unwrap();
25 let f = File::open(input).unwrap();
26 let reader = BufReader::new(f);
27
28 for line_ in reader.lines() {
29 let line = line_.unwrap();
30 match re.find(&line) {
31 Some(_) => println!("{}", line),
32 None => (),
33 }
34 }
35 }

2.14 Reading from stdin
A command-line utility wouldn’t be complete if it wasn’t able to read from stdin.
Unfortunately for those readers who skimmed over earlier parts of this chapter, some
of the syntax on line 8 might look quite unfamiliar. In short, rather than duplicate
code within main(), we’ll use a generic function to abstract away the details of whether
we are dealing with files or stdin:

 1 use std::fs::File;
 2 use std::io;
 3 use std::io::BufReader;
 4 use std::io::prelude::*;
 5 use regex::Regex;

Listing 2.29 Reading lines from a file

Listing 2.30 Searching through a file or stdin

line is a String, but
re.find() takes an &str
as an argument.

75Summary
 6 use clap::{App,Arg};
 7
 8 fn process_lines<T: BufRead + Sized>(reader: T, re: Regex) {
 9 for line_ in reader.lines() {
10 let line = line_.unwrap();
11 match re.find(&line) {
12 Some(_) => println!("{}", line),
13 None => (),
14 }
15 }
16 }
17
18 fn main() {
19 let args = App::new("grep-lite")
20 .version("0.1")
21 .about("searches for patterns")
22 .arg(Arg::with_name("pattern")
23 .help("The pattern to search for")
24 .takes_value(true)
25 .required(true))
26 .arg(Arg::with_name("input")
27 .help("File to search")
28 .takes_value(true)
29 .required(false))
30 .get_matches();
31
32 let pattern = args.value_of("pattern").unwrap();
33 let re = Regex::new(pattern).unwrap();
34
35 let input = args.value_of("input").unwrap_or("-");
36
37 if input == "-" {
38 let stdin = io::stdin();
39 let reader = stdin.lock();
40 process_lines(reader, re);
41 } else {
42 let f = File::open(input).unwrap();
43 let reader = BufReader::new(f);
44 process_lines(reader, re);
45 }
46 }

Summary

 Rust has full support for primitive types, such as integers and floating-point
numbers.

 Functions are strongly typed and require types to be specified for their parame-
ters and return values.

 Rust features, such as iteration and mathematical operations, rely on traits. The
for loop is a shorthand for the std::iter::IntoIterator trait, for example.

 List-like types are tailored to specific use cases. You will typically reach for
Vec<T> first.

line is a String, but
re.find() takes an &str
as an argument.

76 CHAPTER 2 Language foundations
 All Rust programs have a single entry function: main().
 Every crate has a Cargo.toml file that specifies its metadata.
 The cargo tool is able to compile your code and fetch its dependencies.
 The rustup tool provides access to multiple compiler toolchains and to the lan-

guage’s documentation.

Compound data types
Welcome to chapter 3. If we spent the last chapter looking at Rust’s atoms, this
chapter is focused more on its molecules.

 This chapter focuses on two key building blocks for Rust programmers, struct
and enum. Both are forms of compound data types. Together, struct and enum can
compose other types to create something more useful than what those other types
would be alone. Consider how a 2D point (x,y) is composed from two numbers, x
and y. We wouldn’t want to maintain two variables, x and y, in our program. Instead,

This chapter covers
 Composing data with structs

 Creating enumerated data types

 Adding methods and handling errors in a type-
safe manner

 Defining and implementing common behavior
with traits

 Understanding how to keep implementation
details private

 Using cargo to build documentation for your
project
77

78 CHAPTER 3 Compound data types
we would like to refer to the point as a whole entity. In this chapter, we also discuss
how to add methods to types with impl blocks. Lastly, we take a deeper look at traits,
Rust’s system for defining interfaces.

 Throughout this chapter, you’ll work through how to represent files in code.
Although conceptually simple—if you’re reading this book, it’s highly likely you’ve
interacted with a file through code before—there are enough edge cases to make
things interesting. Our strategy will be to create a mock version of everything using
our own imaginary API. Then, toward the latter part of the chapter, you’ll learn how
to interact with your actual operating system (OS) and its filesystem(s).

3.1 Using plain functions to experiment with an API
To start, let’s see how far we can get by making use of the tools we already know. List-
ing 3.1 lays out a few things that we would expect, such as opening and closing a file.
We’ll use a rudimentary mock type to model one: a simple alias around String that
holds a filename and little else.

 To make things slightly more interesting than writing lots of boilerplate code, list-
ing 3.1 sprinkles in a few new concepts. These show you how to tame the compiler
while you’re experimenting with your design. It provides attributes (#![allow(unused
_variables)]) to relax compiler warnings. The read function illustrates how to
define a function that never returns. The code actually doesn’t do anything, however.
That will come shortly. You’ll find the source for this listing in the file ch3/ch3-not-
quite-file-1.rs.

 1 #![allow(unused_variables)]
 2
 3 type File = String;
 4
 5 fn open(f: &mut File) -> bool {
 6 true
 7
 8 fn close(f: &mut File) -> bool {
 9 true
10 }
11
12 #[allow(dead_code)]
13 fn read(f: &mut File,
14 save_to: &mut Vec<u8>) -> ! {
15 unimplemented!()
16 }
17
18 fn main() {
19 let mut f1 = File::from("f1.txt");
20 open(&mut f1);
21 //read(f1, vec![]);
22 close(&mut f1);
23 }

Listing 3.1 Using type aliases to stub out a type

Relaxes compiler warnings
while working through ideas

Creates a type alias. The compiler
won’t distinguish between String &
File, but your source code will.

Let’s assume for the moment that
these two functions always succeed.

Relaxes a compiler warning
about an unused function

The ! return type
indicates to the Rust
compiler that this
function never returns.

A macro that crashes
the program if it’s
encountered

With the type declaration at line 3,
File inherits all of String’s methods.

There’s little point in
calling this method.

79Using plain functions to experiment with an API
There are lots of things that needs to be built on from listing 3.1. For example

 We haven’t created a persistent object that would represent a file. There’s only so much
that can be encoded in a string.

 There’s no attempt to implement read(). If we did, how would we handle the failure
case?

 open() and close() return bool. Perhaps there is a way to provide a more
sophisticated result type that might be able to contain an error message if the
OS reports one.

 None of our functions are methods. From a stylistic point of view, it might be nice to
call f.open() rather than open(f).

Let’s begin at the top and work our way through this list. Brace yourself for a few sce-
nic detours along the way as we encounter a few side roads that will be profitable to
explore.

Special return types in Rust
If you are new to the language, some return types are difficult to interpret. These are
also especially difficult to search for because they are made from symbols rather
than words.

Known as the unit type, () formally is a zero-length tuple. It is used to express that
a function returns no value. Functions that appear to have no return type return (),
and expressions that are terminated with a semicolon (;) return (). For example, the
report() function in the following code block returns the unit type implicitly:

use std::fmt::Debug;

fn report<T: Debug>(item: T) {
 println!("{:?}", item);

}

And this example returns the unit type explicitly:

fn clear(text: &mut String) -> () {
 *text = String::from("");
}

The unit type often occurs in error messages. It’s common to forget that the last
expression of a function shouldn’t end with a semicolon.

The exclamation symbol, !, is known as the “Never” type. Never indicates that a
function never returns, especially when it is guaranteed to crash. For example, take
this code:

fn dead_end() -> ! {
 panic!("you have reached a dead end");
}

item can be any type
that implements
std::fmt::Debug.

{:?} directs the println! macro to
use std::fmt::Debug to convert
item to a printable string.

Replaces the string at text
with an empty string

The panic! macro causes the
program to crash. This means
the function is guaranteed
never to return.

80 CHAPTER 3 Compound data types

Here
vec! m

simul
an em
3.2 Modeling files with struct
We need something to represent that thing we’re trying to model. struct allows you
to create a composite type made up of other types. Depending on your programming
heritage, you may be more familiar with terms such as object or record.

 We’ll start with requiring that our files have a name and zero or more bytes of data.
Listing 3.2 prints the following two lines to the console:

File { name: "f1.txt", data: [] }
f1.txt is 0 bytes long

To represent data, listing 3.2 uses Vec<u8>, which is a growable list of u8 (single byte)
values. The bulk of the main() function demonstrates usage (e.g., field access). The
file ch3/ch3-mock-file.rs contains the code for this listing.

 1 #[derive(Debug)]
 2 struct File {
 3 name: String,
 4 data: Vec<u8>,
 5 }
 6
 7 fn main() {
 8 let f1 = File {
 9 name: String::from("f1.txt"),
10 data: Vec::new(),
11 };
12
13 let f1_name = &f1.name;
14 let f1_length = &f1.data.len();
15
16 println!("{:?}", f1);
17 println!("{} is {} bytes long", f1_name, f1_length);
18 }

(continued)

The following example creates an infinite loop that prevents the function from returning:

fn forever() -> ! {
 loop {
 //...
 };
}

As with the unit type, Never sometimes occurs within error messages. The Rust com-
piler complains about mismatched types when you forget to add a break in your loop
block if you’ve indicated that the function returns a non-Never type.

Listing 3.2 Defining an instance of struct to represent files

Unless it contains a break, the
loop never finishes. This prevents
the function from returning.

Allows println! to print File. The std::fmt::Debug
trait works in conjunction with {:?} within the
macro to enable File as a printable string.

Using Vec<u8>, provides access to some useful
conveniences like dynamic sizing, which makes it
possible to simulate writing to a file

String::from generates
owned strings from string
literals, which are slices.

 the
acro
ates
pty
file.

Accessing fields uses the . operator.
Accessing fields by reference prevents
their use after move issues.

81Modeling files with struct
Here is a detailed overview of listing 3.2:

 Lines 1–5 define the File struct. Definitions include fields and their associated
types. These also include each field’s lifetimes, which happened to be elided
here. Explicit lifetimes are required when a field is a reference to another
object.

 Lines 8–11 create our first instance of File. We use a literal syntax here, but typi-
cally structs in the wild are created via a convenience method. String::from()
is one of those convenience methods. It takes a value of another type; in this
case, a string slice (&str), which returns a String instance. Vec::new() is the
more common case.

 Lines 13–17 demonstrate accessing our new instance’s fields. We prepend an amper-
sand to indicate that we want to access this data by reference. In Rust parlance,
this means that the variables f1_name and f1_length are borrowing the data
these refer to.

You have probably noticed that our File struct doesn’t actually store anything to disk
at all. That’s actually OK for now. If you’re interested, figure 3.1 shows its internals. In
the figure, its two fields (name and data) are themselves both created by structs. If
you’re unfamiliar with the term pointer (ptr), consider pointers to be the same thing
as references for now. Pointers are variables that refer to some location in memory.
The details are explained at length in chapter 6.

We’ll leave interacting with the hard disk drive or other persistent storage until later
in the chapter. For the meantime, let’s recreate listing 3.1 and add the File type as
promised.

The newtype pattern
Sometimes the type keyword is all that you need. But what about when you need the
compiler to treat your new “type” as a fully-fledged, distinct type rather than just an
alias? Enter newtype. The newtype pattern consists of wrapping a core type within a
single field struct (or perhaps a tuple). The following code shows how to distin-
guish network hostnames from ordinary strings. You’ll find this code in ch3/ch3-new-
type-pattern.rs:

name

String

ptr size capacity

data

Vec<u8>

ptr size capacity

[u8; data.size]

...

[u8; name.size]

...

Field name

Field data type

In-memory
representation

File struct

Figure 3.1 Inspecting
the internals of the
File struct

82 CHAPTER 3 Compound data types
We can now add a little bit of functionality to the first listing of the chapter. Listing 3.3
(available at ch3/ch3-not-quite-file-2.rs) adds the ability to read a file that has some
data in it. It demonstrates how to use a struct to mimic a file and simulate reading its
contents. It then converts opaque data into a String. All functions are assumed to
always succeed, but the code is still littered with hard-coded values. Still, the code finally
prints something to the screen. Here is partially obscured output from the program:

File { name: "2.txt", data: [114, 117, 115, 116, 33] }
2.txt is 5 bytes long

 1 #![allow(unused_variables)]
 2
 3 #[derive(Debug)]
 4 struct File {

(continued)
struct Hostname(String);

fn connect(host: Hostname) {
 println!("connected to {}", host.0);
}

fn main() {
 let ordinary_string = String::from("localhost");
 let host = Hostname (ordinary_string.clone());

 connect(ordinary_string);
}

Here is the compiler output from rustc:

$ rustc ch3-newtype-pattern.rs
error[E0308]: mismatched types
 --> ch3-newtype-pattern.rs:11:13
 |
11 | connect(ordinary_string);
 | ^^^^^^^^^^^^^^^ expected struct `Hostname`,
 found struct `String`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0308`.

Using the newtype pattern can strengthen a program by preventing data from being
silently used in inappropriate contexts. The downside of using the pattern is that each
new type must opt in to all of its intended behavior. This can feel cumbersome.

Listing 3.3 Using struct to mimic a file and simulate reading its contents

Hostname is
our new type. Uses the type system

to guard against
invalid usage

Accesses the underlying
data with a numeric
index

Revealing this line would
spoil all of the fun!

Silences
warningsEnables File to work with println!

and its fmt! sibling macros (used
at the bottom of the listing)

83Modeling files with struct
 5 name: String,
 6 data: Vec<u8>,
 7 }
 8
 9 fn open(f: &mut File) -> bool {
10 true
11 }
12
13 fn close(f: &mut File) -> bool {
14 true
15 }
16
17 fn read(
18 f: &File,
19 save_to: &mut Vec<u8>,
20) -> usize {
21 let mut tmp = f.data.clone();
22 let read_length = tmp.len();
23
24 save_to.reserve(read_length);
25 save_to.append(&mut tmp);
26 read_length
27 }
28
29 fn main() {
30 let mut f2 = File {
31 name: String::from("2.txt"),
32 data: vec![114, 117, 115, 116, 33],
33 };
34
35 let mut buffer: Vec<u8> = vec![];
36
37 open(&mut f2);
38 let f2_length = read(&f2, &mut buffer);
39 close(&mut f2);
40
41 let text = String::from_utf8_lossy(&buffer);
42
43 println!("{:?}", f2);
44 println!("{} is {} bytes long", &f2.name, f2_length);
45 println!("{}", text)
46 }
47

The code so far has tackled two of the four issues raised at the end of listing 3.1:

 Our File struct is a bona fide type.
 read() is implemented, albeit in a memory-inefficient manner.

These last two points remain:

 open() and close() return bool.
 None of our functions are methods.

These two
functions remain
inert for now.

Returns the number
of bytes read

Makes a copy of the data here
because save_to.append()
shrinks the input Vec<T>

Ensures that there is
sufficient space to fit
the incoming data

Allocates sufficient data in the save_to
buffer to hold the contents of f

Does the hard work of
interacting with the file

Converts Vec<u8> to
String. Any bytes that
are not valid UTF-8 are
replaced with �.

Views the bytes 114, 117, 115,
116, and 33 as an actual word

84 CHAPTER 3 Compound data types
3.3 Adding methods to a struct with impl
This section explains briefly what methods are and describes how to make use of
them in Rust. Methods are functions that are coupled to some object. From a syntactic
point of view, these are just functions that don’t need to specify one of their argu-
ments. Rather than calling open() and passing a File object in as an argument
(read(f, buffer)), methods allow the main object to be implicit in the function call
(f.read(buffer)) using the dot operator.1

 Rust is different than other languages that support methods: there is no class key-
word. Types created with struct (and enum, which is described later) feel like classes
at times, but as they don’t support inheritance, it’s probably a good thing that they’re
named something different.

 To define methods, Rust programmers use an impl block, which is physically dis-
tinct in source code from the struct and enum blocks that you have already encoun-
tered. Figure 3.2 shows the differences.

3.3.1 Simplifying object creation by implementing new()

Creating objects with reasonable defaults is done through the new() method. Every
struct can be instantiated through a literal syntax. This is handy for getting started,
but leads to unnecessary verbosity in most code.

 Using new() is a convention within the Rust community. Unlike other languages,
new is not a keyword and isn’t given some sort of blessed status above other methods.
Table 3.1 summarizes the conventions.

1 There are a number of theoretical differences between methods and functions, but a detailed discussion of
those computer science topics is available in other books. Briefly, functions are regarded as pure, meaning their
behavior is determined solely by their arguments. Methods are inherently impure, given that one of their argu-
ments is effectively a side effect. These are muddy waters, though. Functions are perfectly capable of acting on
side effects themselves. Moreover, methods are implemented with functions. And, to add an exception to an
exception, objects sometimes implement static methods, which do not include implicit arguments.

Classes

in other languages
Struct and enum

in Rust

Data

Methods

Data

Methods

impl File {

}

struct File {

}

class File {

}

Figure 3.2 Illustrating syntactic differences
between Rust and most object oriented
languages. Within Rust, methods are defined
separately from fields.

85Adding methods to a struct with impl
To enable these changes, make use of an impl block as the next listing shows (see
ch3/ch3-defining-files-neatly.rs). The resulting executable should print out the same
message as listing 3.3, substituting f3.txt for the original’s f1.txt.

 1 #[derive(Debug)]
 2 struct File {
 3 name: String,
 4 data: Vec<u8>,
 5 }
 6
 7 impl File {
 8 fn new(name: &str) -> File {
 9 File {
10 name: String::from(name),
11 data: Vec::new(),
12 }
13 }
14 }
15
16 fn main() {
17 let f3 = File::new("f3.txt");
18
19 let f3_name = &f3.name;
20 let f3_length = f3.data.len();
21
22 println!("{:?}", f3);
23 println!("{} is {} bytes long", f3_name, f3_length);
24 }

Merging this new knowledge with the example that we already have, listing 3.5 is the
result (see ch3/ch3-defining-files-neatly.rs). It prints the following three lines to
the console:

File { name: "2.txt", data: [114, 117, 115, 116, 33] }
2.txt is 5 bytes long

Table 3.1 Comparing Rust’s literal syntax for creating objects with the use of the new() method

Current usage With File::new()

File {
 name: String::from("f1.txt"),
 data: Vec::new(),
};

File::new("f1.txt", vec![]);

File {
 name: String::from("f2.txt"),
 data: vec![114, 117, 115, 116, 33],
};

File::new("f2.txt", vec![114, 117,
115, 116, 33]);

Listing 3.4 Using impl blocks to add methods to a struct

As File::new() is a completely
normal function, we need to
tell Rust that it will return a
File from this function.

File::new() does little more than
encapsulate the object creation
syntax, which is normal.

Fields are private by default but can
be accessed within the module that
defines the struct. The module system
is discussed later in the chapter.

Still hidden!

86 CHAPTER 3 Compound data types
 1 #![allow(unused_variables)]
 2
 3 #[derive(Debug)]
 4 struct File {
 5 name: String,
 6 data: Vec<u8>,
 7 }
 8
 9 impl File {
10 fn new(name: &str) -> File {
11 File {
12 name: String::from(name),
13 data: Vec::new(),
14 }
15 }
16
17 fn new_with_data(
18 name: &str,
19 data: &Vec<u8>,
20) -> File {
21 let mut f = File::new(name);
22 f.data = data.clone();
23 f
24 }
25
26 fn read(
27 self: &File,
28 save_to: &mut Vec<u8>,
29) -> usize {
30 let mut tmp = self.data.clone();
31 let read_length = tmp.len();
32 save_to.reserve(read_length);
33 save_to.append(&mut tmp);
34 read_length
35 }
36 }
37
38 fn open(f: &mut File) -> bool {
39 true
40 }
41
42 fn close(f: &mut File) -> bool {
43 true
44 }
45
46 fn main() {
47 let f3_data: Vec<u8> = vec![
48 114, 117, 115, 116, 33
49];
50 let mut f3 = File::new_with_data("2.txt", &f3_data);
51
52 let mut buffer: Vec<u8> = vec![];
53

Listing 3.5 Using impl to improve the ergonomics of File

This method sneaked in to deal with
cases where we want to simulate
that a file has pre-existing data.

Replaces the f
argument with self

An explicit type needs to be
provided as vec! and can’t
infer the necessary type
through the function
boundary.

87Returning errors
54 open(&mut f3);
55 let f3_length = f3.read(&mut buffer);
56 close(&mut f3);
57
58 let text = String::from_utf8_lossy(&buffer);
59
60 println!("{:?}", f3);
61 println!("{} is {} bytes long", &f3.name, f3_length);
62 println!("{}", text);
63 }

3.4 Returning errors
Early on in the chapter, two points were raised discussing dissatisfaction with being
unable to properly signify errors:

 There was no attempt at implementing read(). If we did, how would we handle the
failure case?

 The methods open() and close() return bool. Is there a way to provide a more
sophisticated result type to contain an error message if the OS reports one?

The issue arises because dealing with hardware is unreliable. Even ignoring hardware
faults, the disk might be full or the OS might intervene and tell you that you don’t
have permission to delete a particular file. This section discusses different methods
for signalling that an error has occurred, beginning with approaches common in
other languages and finishing with idiomatic Rust.

3.4.1 Modifying a known global variable

One of the simplest methods for signalling that an error has occurred is by checking
the value of a global variable. Although notoriously error-prone, this is a common
idiom in systems programming.

 C programmers are used to checking the value of errno once system calls return.
As an example, the close() system call closes a file descriptor (an integer representing a
file with numbers assigned by the OS) and can modify errno. The section of the
POSIX standard discussing the close() system call includes this snippet:

“If close() is interrupted by a signal that is to be caught, it shall return -1 with errno
set to EINTR and the state of fildes [file descriptor] is unspecified. If an I/O error
occurred while reading from or writing to the file system during close(), it may return
-1 with errno set to EIO; if this error is returned, the state of fildes is unspecified.”

—The Open Group Base Specifications (2018)

Setting errno to either EIO or EINTR means to set it to some magical internal constant.
The specific values are arbitrary and defined per OS. With the Rust syntax, checking
global variables for error codes would look something like the following listing.

Here is the
change in the
calling code.

88 CHAPTER 3 Compound data types

th
val

reli
co

that
static mut ERROR: i32 = 0;

// ...

fn main() {
 let mut f = File::new("something.txt");

 read(f, buffer);
 unsafe {
 if ERROR != 0 {
 panic!("An error has occurred while reading the file ")
 }
 }

 close(f);
 unsafe {
 if ERROR != 0 {
 panic!("An error has occurred while closing the file ")
 }
 }
}

Listing 3.7, presented next, introduces some new syntax. The most significant is prob-
ably the unsafe keyword, whose significance we’ll discuss later in the book. In the
meantime, consider unsafe to be a warning sign rather than an indicator that you’re
embarking on anything illegal. Unsafe means “the same level of safety offered by C at
all times.” There are also some other small additions to the Rust language that you
know already:

 Mutable global variables are denoted with static mut.
 By convention, global variables use ALL CAPS.
 A const keyword is included for values that never change.

Figure 3.3 provides a visual overview of the flow control error and error handling in
listing 3.7.

Listing 3.6 Rust-like code that checks error codes from a global variable

A global variable, static mut (or
mutable static), with a static lifetime
that’s valid for the life of the program

Accessing and
modifying static
mut variables
requires the use of
an unsafe block.
This is Rust’s way
of disclaiming all
responsibility.

Checks
e ERROR
ue. Error
checking
es on the
nvention
 0 means
no error.

89Returning errors
main()

read()

No

Yes

No

Yes

Start

End End

Set ERROR to OK

Initialize File object f

Vec<u8> object buffer

Is ERROR OK?

Read from disk,

load to buffer

Set ERROR to not OKRead successful?

Return number

of bytes

saved to buffer

Issue:

error is not

encoded in result

Panic

Issue:

handling errors

away from their origin

Issue:

error checking

not enforced

(Rest of program)

Figure 3.3 A visual overview of listing 3.7,
including explanations of problems with
using global error codes

90 CHAPTER 3 Compound data types
 1 use rand::{random};
 2
 3 static mut ERROR: isize = 0;
 4
 5 struct File;
 6
 7 #[allow(unused_variables)]
 8 fn read(f: &File, save_to: &mut Vec<u8>) -> usize {
 9 if random() && random() && random() {
10 unsafe {
11 ERROR = 1;
12 }
13 }
14 0
15 }
16
17 #[allow(unused_mut)]
18 fn main() {
19 let mut f = File;
20 let mut buffer = vec![];
21
22 read(&f, &mut buffer);
23 unsafe {
24 if ERROR != 0 {
25 panic!("An error has occurred!")
26 }
27 }
28 }

Here are the commands that you will need to use to experiment with the project at
listing 3.7:

1 git clone --depth=1 https:/ /github.com/rust-in-action/code rust-in-
action to download the book’s source code

2 cd rust-in-action/ch3/globalerror to move into the project directory
3 cargo run to execute the code

If you prefer to do things manually, there are more steps to follow:

1 cargo new --vcs none globalerror to create a new blank project.
2 cd globalerror to move into the project directory.
3 cargo add rand@0.8 to add version 0.8 of the rand crate as a dependency (run

cargo install cargo-edit if you receive an error message that cargo add com-
mand is unavailable).

4 As an optional step, you can verify that the rand crate is now a dependency by
inspecting Cargo.toml at the root of the project. It will contain the following
two lines:

[dependencies]
rand = "0.8"

Listing 3.7 Using global variables to propagate error information

Brings the rand crate
into local scope

Initializes ERROR to 0

Creates a zero-sized type to stand in for
a struct while we’re experimenting

Returns true one out
of eight times this
function is called

Sets ERROR to 1, notifying
the rest of the system that
an error has occurred

Always reads 0 bytes

Keeping buffer mutable for
consistency with other code even
though it isn’t touched here

Accessing static mut variables is
an unsafe operation.

91Returning errors
5 Replace the contents of src/main.rs with the code in listing 3.7 (see ch3/
globalerror/src/main.rs).

6 Now that your source code is in place, execute cargo run.

You should see output like this:

$ cargo run
 Compiling globalerror v0.1.0 (file:/ / /path/to/globalerror)
 Finished dev [unoptimized + debuginfo] target(s) in 0.74 secs
 Running `target/debug/globalerror`

Most of the time, the program will not do anything. Occasionally, if the book has
enough readers with sufficient motivation, it will print a much louder message:

$ cargo run
thread 'main' panicked at 'An error has occurred!',
<linearrow />src/main.rs:27:13
note: run with `RUST_BACKTRACE=1` environment variable to display
 a backtrace

Experienced programmers will know that using the global variable errno is com-
monly adjusted by the OS during system calls. This style of programming would typ-
ically be discouraged in Rust because it omits both type safety (errors are encoded
as plain integers) and can reward sloppy programmers with unstable programs
when they forget to check the errno value. However, it’s an important style to be
aware of because

 Systems programmers may need to interact with OS-defined global values.
 Software that interacts with CPU registers and other low-level hardware needs to

get used to inspecting flags to check that operations were completed successfully.

The difference between const and let
If variables defined with let are immutable, then why does Rust include a const key-
word? The short answer is that data behind let can change. Rust allows types to
have an apparently contradictory property of interior mutability.

Some types such as std:sync::Arc and std:rc::Rc present an immutable façade,
yet change their internal state over time. In the case of those two types, these incre-
ment a reference count as references to those are made and decrement that count
when those references expire.

At the level of the compiler, let relates more to aliasing than immutability. Aliasing
in compiler terminology refers to having multiple references to the same location in
memory at the same time. Read-only references (borrows) to variables declared with
let can alias the same data. Read-write references (mutable borrows) are guaran-
teed to never alias data.

92 CHAPTER 3 Compound data types
3.4.2 Making use of the Result return type

Rust’s approach to error handling is to use a type that stands for both the standard case
and the error case. This type is known as Result. Result has two states, Ok and Err. This
two-headed type is versatile and is put to work all through the standard library.

 We’ll consider how a single type can act as two later on. For the moment, let’s
investigate the mechanics of working with it. Listing 3.8 makes changes from previ-
ous iterations:

 Functions that interact with the file system, such as open() on line 39, return
Result<File, String>. This effectively allows two types to be returned. When
the function successfully executes, File is returned within a wrapper as Ok(File).
When the function encounters an error, it returns a String within its own wrap-
per as Err(String). Using a String as an error type provides an easy way to
report error messages.

 Calling functions that return Result<File, String> requires an extra method
(unwrap()) to actually extract the value. The unwrap() call unwraps Ok(File)
to produce File. It will crash the program if it encounters Err(String). More
sophisticated error handling is explained in chapter 4.

 open() and close() now take full ownership of their File arguments. While
we’ll defer a full explanation of the term ownership until chapter 4, it deserves a
short explanation here.

Rust’s ownership rules dictate when values are deleted. Passing the File
argument to open() or close() without prepending an ampersand, e.g. &File
or &mut File, passes ownership to the function that is being called. This would
ordinarily mean that the argument is deleted when the function ends, but these
two also return their arguments at the end.

 The f4 variable now needs to reclaim ownership. Associated with the changes
to the open() and close() functions is a change to the number of times that
let f4 is used. f4 is now rebound after each call to open() and close(). With-
out this, we would run into issues with using data that is no longer valid.

To run the code in listing 3.8, execute these commands from a terminal window:

$ git clone --depth=1 https:/ /github.com/rust-in-action/code rust-in-action
$ cd rust-in-action/ch3/fileresult
$ cargo run

To do things by hand, here are the recommended steps:

1 Move to a scratch directory, such as /tmp; for example, cd $TMP (cd %TMP% on
MS Windows).

2 Execute cargo new --bin --vcs none fileresult.
3 Ensure that the crate’s Cargo.toml file specifies the 2018 edition and includes

the rand crate as a dependency:

93Returning errors
[package]
name = "fileresult"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
rand = "0.8"

4 Replace the contents of fileresult/src/main.rs with the code in listing 3.8 (ch3/
fileresult/src/main.rs).

5 Execute cargo run.

Executing cargo run produces debugging output, but nothing from the executable
itself:

$ cargo run
 Compiling fileresult v0.1.0 (file:/ / /path/to/fileresult)
 Finished dev [unoptimized + debuginfo] target(s) in 1.04 secs
 Running `target/debug/fileresult`

 1 use rand::prelude::*;
 2
 3 fn one_in(denominator: u32) -> bool {
 4 thread_rng().gen_ratio(1, denominator)
 5 }
 6
 7 #[derive(Debug)]
 8 struct File {
 9 name: String,
10 data: Vec<u8>,
11 }
12
13 impl File {
14 fn new(name: &str) -> File {
15 File {
16 name: String::from(name),
17 data: Vec::new()
18 }
19 }
20
21 fn new_with_data(name: &str, data: &Vec<u8>) -> File {
22 let mut f = File::new(name);
23 f.data = data.clone();
24 f
25 }
26
27 fn read(
28 self: &File,
29 save_to: &mut Vec<u8>,
30) -> Result<usize, String> {

Listing 3.8 Using Result to mark functions liable to filesystem errors

Brings common traits and
types from the rand crate
into this crate’s scope

Helper function
that triggers
sporadic errors

thread_rng() creates a
thread-local random number

generator; gen_ratio(n, m)
returns a Boolean value with

an n/m probability.

Stylistic change to
shorten the code block

First appearance of Result<T, E>,
where T is an integer of type usize
and E is a String. Using String
provides arbitrary error messages.

94 CHAPTER 3 Compound data types
31 let mut tmp = self.data.clone();
32 let read_length = tmp.len();
33 save_to.reserve(read_length);
34 save_to.append(&mut tmp);
35 Ok(read_length)
36 }
37 }
38
39 fn open(f: File) -> Result<File, String> {
40 if one_in(10_000) {
41 let err_msg = String::from("Permission denied");
42 return Err(err_msg);
43 }
44 Ok(f)
45 }
46
47 fn close(f: File) -> Result<File, String> {
48 if one_in(100_000) {
49 let err_msg = String::from("Interrupted by signal!");
50 return Err(err_msg);
51 }
52 Ok(f)
53 }
54
55 fn main() {
56 let f4_data: Vec<u8> = vec![114, 117, 115, 116, 33];
57 let mut f4 = File::new_with_data("4.txt", &f4_data);
58
59 let mut buffer: Vec<u8> = vec![];
60
61 f4 = open(f4).unwrap();
62 let f4_length = f4.read(&mut buffer).unwrap();
63 f4 = close(f4).unwrap();
67
65 let text = String::from_utf8_lossy(&buffer);
66
67 println!("{:?}", f4);
68 println!("{} is {} bytes long", &f4.name, f4_length);
69 println!("{}", text);
70 }

NOTE Calling .unwrap() on a Result is often considered poor style. When
called on an error type, the program crashes without a helpful error message.
As the chapter progresses, we’ll encounter sophisticated mechanisms to han-
dle errors.

Using Result provides compiler-assisted code correctness: your code won’t compile
unless you’ve taken the time to handle the edge cases. This program will fail on error,
but at least we have made this explicit.

 So, what is a Result? Result is an enum defined in Rust’s standard library. It has
the same status as any other type but is tied together with the rest of the language
through strong community conventions. You may be wondering, “Wait. What is an
enum?” I’m glad you asked. That’s the topic of our next section.

In this code, read() never fails, but
we still wrap read_length in Ok
because we’re returning Result.

Once in 10,000
executions,
returns an error

Once in 100,000
executions,
returns an error

Unwraps T from
Ok, leaving T

95Defining and making use of an enum

Vec<
asks

to infer
eleme

t

3.5 Defining and making use of an enum
An enum, or enumeration, is a type that can represent multiple known variants. Classi-
cally, an enum represents several predefined known options like the suits of playing
cards or planets in the solar system. The following listing shows one such enum.

enum Suit {
 Clubs,
 Spades,
 Diamonds,
 Hearts,
}

If you haven’t programmed in a language that makes use of enums, understanding
their value takes some effort. As you program with these for a while, though, you’re
likely to experience a minor epiphany.

 Consider creating some code that parses event logs. Each event has a name, per-
haps UPDATE or DELETE. Rather than storing those values as strings in your application,
which can lead to subtle bugs later on when string comparisons become unwieldy,
enums allow you to give the compiler some knowledge of the event codes. Later, you’ll
be given a warning such as “Hi there, I see that you have considered the UPDATE case,
but it looks like you’ve forgotten the DELETE case. You should fix that.”

 Listing 3.10 shows the beginnings of an application that parses text and emits
structured data. When run, the program produces the following output. You’ll find
the code for this listing in ch3/ch3-parse-log.rs:

(Unknown, "BEGIN Transaction XK342")
(Update, "234:LS/32231 {\"price\": 31.00} -> {\"price\": 40.00}")
(Delete, "342:LO/22111")

 1 #[derive(Debug)]
 2 enum Event {
 3 Update,
 4 Delete,
 5 Unknown,
 6 }
 7
 8 type Message = String;
 9
10 fn parse_log(line: &str) -> (Event, Message) {
11 let parts: Vec<_> = line
12 .splitn(2, ' ')
13 .collect();
14 if parts.len() == 1 {
15 return (Event::Unknown, String::from(line))
16 }

Listing 3.9 Defining an enum to represent the suits in a deck of cards

Listing 3.10 Defining an enum and using it to parse an event log

Prints this enum to the screen
via auto-generated code

Creates three variants of
Event, including a value
for unrecognized events

A convenient name for String
for use in this crate’s context

A function for
parsing a line and
converting it into
semi-structured
data

_>
Rust
 the
nts’
ype.

collect() consumes an iterator from
line.splitn() and returns Vec<T>.

If line.splitn() doesn’t
split log into two parts,
returns an error

96 CHAPTER 3 Compound data types
17
18 let event = parts[0];
19 let rest = String::from(parts[1]);
20
21 match event {
22 "UPDATE" | "update" => (Event::Update, rest),
23 "DELETE" | "delete" => (Event::Delete, rest),
24 _ => (Event::Unknown, String::from(line)),
25 }
26 }
27
28 fn main() {
29 let log = "BEGIN Transaction XK342
30 UPDATE 234:LS/32231 {\"price\": 31.00} -> {\"price\": 40.00}
31 DELETE 342:LO/22111";
32
33 for line in log.lines() {
34 let parse_result = parse_log(line);
35 println!("{:?}", parse_result);
36 }
37 }

Enums have a few tricks up their sleeves:

 These work together with Rust’s pattern-matching capabilities to help you build
robust, readable code (visible on lines 19–3 of listing 3.10).

 Like structs, enums support methods via impl blocks.
 Rust’s enums are more powerful than a set of constants.

It’s possible to include data within an enum’s variants, granting them a struct-like per-
sona. For example

enum Suit {
 Clubs,
 Spades,
 Diamonds,
 Hearts,
}

enum Card {
 King(Suit),
 Queen(Suit),
 Jack(Suit),
 Ace(Suit),
 Pip(Suit, usize),
}

3.5.1 Using an enum to manage internal state

Now that you’ve seen how to define and use an enum, how is this useful when applied
to modelling files? We can expand our File type and allow it to change as it is opened
and closed. Listing 3.11 (ch3/ch3-file-states.rs) produces code that prints a short alert
to the console:

Assigns each part of parts to a
variable to ease future use

When we match a known event,
returns structured data

If we don’t recognize
the event type, returns
the whole line

The last element of enums
also ends with a comma to
ease refactoring.

Face cards
have a suit.

Pip cards have a
suit and a rank.

97Defining and making use of an enum
Error checking is working
File { name: "5.txt", data: [], state: Closed }
5.txt is 0 bytes long

 1 #[derive(Debug,PartialEq)]
 2 enum FileState {
 3 Open,
 4 Closed,
 5 }
 6
 7 #[derive(Debug)]
 8 struct File {
 9 name: String,
10 data: Vec<u8>,
11 state: FileState,
12 }
13
14 impl File {
15 fn new(name: &str) -> File {
16 File {
17 name: String::from(name),
18 data: Vec::new(),
19 state: FileState::Closed,
20 }
21 }
22
23 fn read(
24 self: &File,
25 save_to: &mut Vec<u8>,
26) -> Result<usize, String> {
27 if self.state != FileState::Open {
28 return Err(String::from("File must be open for reading"));
29 }
30 let mut tmp = self.data.clone();
31 let read_length = tmp.len();
32 save_to.reserve(read_length);
33 save_to.append(&mut tmp);
34 Ok(read_length)
35 }
36 }
37
38 fn open(mut f: File) -> Result<File, String> {
39 f.state = FileState::Open;
40 Ok(f)
41 }
42
43 fn close(mut f: File) -> Result<File, String> {
44 f.state = FileState::Closed;
45 Ok(f)
46 }
47
48 fn main() {
49 let mut f5 = File::new("5.txt");

Listing 3.11 An enum that represents a File being open or closed

98 CHAPTER 3 Compound data types
50
51 let mut buffer: Vec<u8> = vec![];
52
53 if f5.read(&mut buffer).is_err() {
54 println!("Error checking is working");
55 }
56
57 f5 = open(f5).unwrap();
58 let f5_length = f5.read(&mut buffer).unwrap();
59 f5 = close(f5).unwrap();
60
61 let text = String::from_utf8_lossy(&buffer);
62
63 println!("{:?}", f5);
64 println!("{} is {} bytes long", &f5.name, f5_length);
65 println!("{}", text);
66 }

Enums can be a powerful aide in your quest to produce reliable, robust software. Con-
sider them for your code when you discover yourself introducing “stringly-typed” data,
such as message codes.

3.6 Defining common behavior with traits
A robust definition of the term file needs to be agnostic to storage medium. Files sup-
port two main operations: reading and writing streams of bytes. Focusing on those two
capabilities allows us to ignore where the reads and writes are actually taking place.
These actions can be from a hard disk drive, an in-memory cache, over a network, or
via something more exotic.

 Irrespective of whether a file is a network connection, a spinning metal platter, or a
superposition of an electron, it’s possible to define rules that say, “To call yourself a file,
you must implement this.”

 You have already seen traits in action several times. Traits have close relatives in
other languages. These are often named interfaces, protocols, type classes, abstract
base classes, or, perhaps, contracts.

 Every time you’ve used #[derive(Debug)] in a type definition, you’ve imple-
mented the Debug trait for that type. Traits permeate the Rust language. Let’s see how
to create one.

3.6.1 Creating a Read trait

Traits enable the compiler (and other humans) to know that multiple types are
attempting to perform the same task. Types that use #[derive(Debug)] all print to
the console via the println! macro and its relatives. Allowing multiple types to imple-
ment a Read trait enables code reuse and allows the Rust compiler to perform its zero
cost abstraction wizardry.

 For the sake of brevity, listing 3.12 (ch3/ch3-skeleton-read-trait.rs) is a bare-bones
version of the code that we’ve already seen. It shows the distinction between the trait
keyword, which is used for definitions, and the impl keyword, which attaches a trait to

99Defining common behavior with traits
a specific type. When built with rustc and executed, listing 3.12 prints the following
line to the console:

0 byte(s) read from File

 1 #![allow(unused_variables)]
 2
 3 #[derive(Debug)]
 4 struct File;
 5
 6 trait Read {
 7 fn read(
 8 self: &Self,
 9 save_to: &mut Vec<u8>,
10) -> Result<usize, String>;
11 }
12
13 impl Read for File {
14 fn read(self: &File, save_to: &mut Vec<u8>) -> Result<usize, String> {
15 Ok(0)
16 }
17 }
18
19 fn main() {
20 let f = File{};
21 let mut buffer = vec!();
22 let n_bytes = f.read(&mut buffer).unwrap();
23 println!("{} byte(s) read from {:?}", n_bytes, f);
24 }

Defining a trait and implementing it on the same page can feel quite drawn out in
small examples such as this. File is spread across three code blocks within listing 3.12.
The flip side of this is that many common traits become second nature as your experi-
ence grows. Once you’ve learned what the PartialEq trait does for one type, you’ll
understand it for every other type.

 What does PartialEq do for types? It enables comparisons with the == operator.
“Partial” allows for cases where two values that match exactly should not be treated as
equal, such as the floating point’s NAN value or SQL’s NULL.

NOTE If you’ve spent some time looking through the Rust community’s forums
and documentation, you might have noticed that they’ve formed their own idi-
oms of English grammar. When you see a sentence with the following structure,
“…T is Debug…”, what they’re saying is that T implements the Debug trait.

3.6.2 Implementing std::fmt::Display for your own types

The println! macro and a number of others live within a family of macros that all use
the same underlying machinery. The macros println!, print!, write!, writeln!, and
format! all rely on the Display and Debug traits, and these rely on trait implementa-
tions provided by programmers to convert from {} to what is printed to the console.

Listing 3.12 Defining the bare bones of a Read trait for File

Silences any warnings relating to
unused variables within functions

Defines a stub File type

Provides a specific
name for the trait

A trait block includes the type
signatures of functions that
implementors must comply with. The
pseudo-type Self is a placeholder for the
type that eventually implements Read.

A simple stub value that
complies with the type
signature required

100 CHAPTER 3 Compound data types

L
skip

from
orig
 Looking back a few pages to listing 3.11, the File type was composed of a few fields
and a custom subtype, FileState. If you recall, that listing illustrated the use of the
Debug trait as repeated in the following listing.

#[derive(Debug,PartialEq)]
enum FileState {
 Open,
 Closed,
}

#[derive(Debug)]
struct File {
 name: String,
 data: Vec<u8>,
 state: FileState,
}

//...

fn main() {
 let f5 = File::new("f5.txt");

 //...
 println!("{:?}", f5);
 // ...
}

It’s possible to rely on the Debug trait auto-implementations as a crutch, but what
should you do if you want to provide custom text? Display requires that types imple-
ment a fmt method, which returns fmt::Result. The following listing shows this
implementation.

impl Display for FileState {
 fn fmt(&self, f:
 &mut fmt::Formatter,
) -> fmt::Result {
 match *self {
 FileState::Open => write!(f, "OPEN"),
 FileState::Closed => write!(f, "CLOSED"),
 }
 }
}

impl Display for File {
 fn fmt(&self, f:
 &mut fmt::Formatter,
) -> fmt::Result {
 write!(f, "<{} ({})>",

Listing 3.13 Snippets from listing 3.11

Listing 3.14 Using std::fmt::Display for File and its associated FileState

ines
ped
 the
inal Debug relies on the

colon and question
mark syntax.

To implement
std::fmt::Display, a
single fmt method
must be defined for
your type.

101Defining common behavior with traits
 self.name, self.state)
 }
}

The following listing shows how to implement Display for a struct that includes fields
that also need to implement Display. You’ll find the code for this listing in ch3/ch3-
implementing-display.rs.

 1 #![allow(dead_code)]
 2
 3 use std::fmt;
 4 use std::fmt::{Display};
 5
 6 #[derive(Debug,PartialEq)]
 7 enum FileState {
 8 Open,
 9 Closed,
10 }
11
12 #[derive(Debug)]
13 struct File {
14 name: String,
15 data: Vec<u8>,
16 state: FileState,
17 }
18
19 impl Display for FileState {
20 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
21 match *self {
22 FileState::Open => write!(f, "OPEN"),
23 FileState::Closed => write!(f, "CLOSED"),
24 }
25 }
26 }
27
28 impl Display for File {
29 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
30 write!(f, "<{} ({})>",
31 self.name, self.state)
32 }
33 }
34
35 impl File {
36 fn new(name: &str) -> File {
37 File {
38 name: String::from(name),
39 data: Vec::new(),
40 state: FileState::Closed,
41 }
42 }
43 }

Listing 3.15 Working code snippet to implement Display

It is common to defer to the inner
types’ Display implementation via
the write! macro.

Silences warnings related to
FileState::Open not being used

Brings the std::fmt crate into local
scope, making use of fmt::Result

Brings Display into local scope,
avoiding the need to prefix it as
fmt::Display

Sneakily, we can make use
of write! to do the grunt
work for us. Strings
already implement
Display, so there’s little
left for us to do.

We can rely on this
FileState Display
implementation.

102 CHAPTER 3 Compound data types
44
45 fn main() {
46 let f6 = File::new("f6.txt");
47 //...
48 println!("{:?}", f6);
49 println!("{}", f6);
50 }

We’ll see many uses of traits throughout the course of the book. These underlie Rust’s
generics system and the language’s robust type checking. With a little bit of abuse,
these also support a form of inheritance that’s common in most object oriented lan-
guages. For now, though, the thing to remember is that traits represent common
behavior that types opt into via the syntax impl Trait for Type.

3.7 Exposing your types to the world
Your crates will interact with others that you build over time. You might want to make
that process easier for your future self by hiding internal details and documenting
what’s public. This section describes some of the tooling available within the language
and within cargo to make that process easier.

3.7.1 Protecting private data

Rust defaults to keeping things private. If you were to create a library with only the
code that you have seen so far, importing your crate would provide no extra benefit.
To remedy this, use the pub keyword to make things public.

 Listing 3.16 provides a few examples of prefixing types and methods with pub. As
you’ll note, its output is not very exciting:

File { name: "f7.txt", data: [], state: Closed }

 1 #[derive(Debug,PartialEq)]
 2 pub enum FileState {
 3 Open,
 4 Closed,
 5 }
 6
 7 #[derive(Debug)]
 8 pub struct File {
 9 pub name: String,
10 data: Vec<u8>,
11 pub state: FileState,
12 }
13
14 impl File {
15 pub fn new(name: &str) -> File {
16 File {
17 name: String::from(name),

Listing 3.16 Using pub to mark the name and state fields of File public

The Debug implementation prints a familiar
message in common with all other
implementors of Debug: File { … }.

Our Display implementation
follows its own rules, displaying
itself as <f6.txt (CLOSED)>.

An enum’s variants are
assumed to be public if the
overall type is made public.

File.data remains private if
a third party were to import
this crate via use.

Even though the File struct
is public, its methods must
also be explicitly marked
as public.

103Creating inline documentation for your projects
18 data: Vec::new(),
19 state: FileState::Closed
20 }
21 }
22 }
23
24 fn main() {
25 let f7 = File::new("f7.txt");
26 //...
27 println!("{:?}", f7);
28 }

3.8 Creating inline documentation for your projects
When software systems become larger, it becomes more important to document one’s
progress. This section walks through adding documentation to your code and gener-
ating HTML versions of that content.

 In listing 3.17, you’ll see the familiar code with some added lines beginning with
/// or //!. The first form is much more common. It generates documents that refer
to the item that immediately follows. The second form refers to the current item as
the compiler scans the code. By convention, it is only used to annotate the current
module but is available in other places as well. The code for this listing is in the file
ch3-file-doced.rs.

 1 //! Simulating files one step at a time.
 2
 3 /// Represents a "file",
 4 /// which probably lives on a file system.
 5 #[derive(Debug)]
 6 pub struct File {
 7 name: String,
 8 data: Vec<u8>,
 9 }
10
11 impl File {
12 /// New files are assumed to be empty, but a name is required.
13 pub fn new(name: &str) -> File {
14 File {
15 name: String::from(name),
16 data: Vec::new(),
17 }
18 }
19
20 /// Returns the file's length in bytes.
21 pub fn len(&self) -> usize {
22 self.data.len()
23 }
24
25 /// Returns the file's name.
26 pub fn name(&self) -> String {

Listing 3.17 Adding doc comments to code

//! refers to the current
item, the module that’s
just been entered by the
compiler.

/// annotates whatever
immediately follows it.

104 CHAPTER 3 Compound data types
27 self.name.clone()
28 }
29 }
30
31 fn main() {
32 let f1 = File::new("f1.txt");
33
34 let f1_name = f1.name();
35 let f1_length = f1.len();
36
37 println!("{:?}", f1);
38 println!("{} is {} bytes long", f1_name, f1_length);
39 }

3.8.1 Using rustdoc to render docs for a single source file

You may not know it, but you also installed a command-line tool called rustdoc when
you installed Rust. rustdoc is like a special-purpose Rust compiler. Instead of produc-
ing executable code, it produces HTML versions of your inline documentation.

 Here is how to use it. Assuming that you have the code from listing 3.17 saved as
ch3-file-doced.rs, follow these steps:

1 Open a terminal.
2 Move to the location of your source file.
3 Execute rustdoc ch3-file-doced.rs.

rustdoc creates a directory (doc/) for you. The documentation’s entry point is actu-
ally within a subdirectory: doc/ch3_file_doced/index.html.

 When your programs start to get larger and span multiple files, invoking rustdoc
manually can become a bit of a pain. Thankfully, cargo can do the grunt work on your
behalf. That’s discussed in the next section.

3.8.2 Using cargo to render docs for a crate and its dependencies

Your documentation can be rendered as rich HTML output with cargo. cargo works
with crates rather than the individual files as we’ve worked with so far. To get around
this, we’ll move our project into a crate documentation: To manually create the crate,
following these instructions:

1 Open a terminal.
2 Move to a working directory, such as /tmp/, or for Windows, type cd %TEMP%.
3 Run cargo new filebasics.

You should end up with a project directory tree that looks like this:

filebasics
├──Cargo.toml
└──src
 └──main.rs

4 Now save the source code from listing 3.17 to filebasics/src/main.rs, overwrit-
ing the “Hello World!” boilerplate code that is already in the file.

This file is what
you’ll edit in the
following steps.

105Creating inline documentation for your projects
To skip a few steps, clone the repository. Execute these commands from a terminal:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
$ cd rust-in-action/ch3/filebasics

To build an HTML version of the crate’s documentation, follow these steps:

1 Move to the project’s root directory (filebasics/), which includes the Cargo
.toml file.

2 Run cargo doc --open.

Rust will now starts to compile an HTML version of your code’s documentation. You
should see output similar to the following in the console:

Documenting filebasics v0.1.0 (file:/ / /C:/.../Temp/filebasics)
 Finished dev [unoptimized + debuginfo] target(s) in 1.68 secs
 Opening C:\...\Temp\files\target\doc\filebasics\index.html
 Launching cmd /C

If you added the --open flag, your web browser will automatically. Figure 3.4 shows the
documentation that should now be visible.

Figure 3.4 Rendered output of cargo doc

106 CHAPTER 3 Compound data types
TIP If you have lots of dependencies in your crate, the build process may
take a while. A useful flag is cargo doc --no-deps. Adding --no-deps can sig-
nificantly restrict the work rustdoc has to do.

rustdoc supports rendering rich text written in Markdown. That allows you to add
headings, lists, and links within your documentation. Code snippets that are wrapped
in triple backticks (```) are given syntax highlighting.

 1 //! Simulating files one step at a time.
 2
 3
 4 impl File {
 5 /// Creates a new, empty `File`.
 6 ///
 7 /// # Examples
 8 ///
 9 /// ```
10 /// let f = File::new("f1.txt");
11 /// ```
12 pub fn new(name: &str) -> File {
13 File {
14 name: String::from(name),
15 data: Vec::new(),
16 }
17 }
18 }

Summary
 A struct is the foundational compound data type. Paired with traits, structs are

the closest thing to objects from other domains.
 An enum is more powerful than a simple list. Enum’s strength lies in its ability to

work with the compiler to consider all edge cases.
 Methods are added to types via impl blocks.
 You can use global error codes in Rust, but this can be cumbersome and gener-

ally is frowned on.
 The Result type is the mechanism the Rust community prefers to use to signal

the possibility of error.
 Traits enable common behavior through Rust programs.
 Data and methods remain private until they are declared public with pub.
 You can use cargo to build the documentation for your crate and all of its

dependencies.

Listing 3.18 Documenting Rust code with in-line comments

Lifetimes, ownership,
and borrowing
This chapter explains one of the concepts that trip up most newcomers to Rust—its
borrow checker. The borrow checker checks that all access to data is legal, which allows
Rust to prevent safety issues. Learning how this works will, at the very least, speed
up your development time by helping you avoid run-ins with the compiler. More sig-
nificantly though, learning to work with the borrow checker allows you to build
larger software systems with confidence. It underpins the term fearless concurrency.

 This chapter will explain how this system operates and help you learn how to
comply with it when an error is discovered. It uses the somewhat lofty example of

This chapter covers
 Discovering what the term lifetime means in Rust

programming

 Working with the borrow checker rather than
against it

 Multiple tactics for dealing with issues when
these crop up

 Understanding the responsibilities of an owner

 Learning how to borrow values that are owned
elsewhere
107

108 CHAPTER 4 Lifetimes, ownership, and borrowing
simulating a satellite constellation to explain the trade-offs relating to different ways
to provide shared access to data. The details of borrow checking are thoroughly
explored within the chapter. However, a few points might be useful for readers want-
ing to quickly get the gist. Borrow checking relies on three interrelated concepts—
lifetimes, ownership, and borrowing:

 Ownership is a stretched metaphor. There is no relationship to property rights.
Within Rust, ownership relates to cleaning values when these are no longer
needed. For example, when a function returns, the memory holding its local
variables needs to be freed. Owners cannot prevent other parts of the program
from accessing their values or report data theft to some overarching Rust
authority.

 A value’s lifetime is the period when accessing that value is valid behavior. A function’s
local variables live until the function returns, while global variables might live
for the life of the program.

 To borrow a value means to access it. This terminology is somewhat confusing as
there is no obligation to return the value to its owner. Its meaning is used to
emphasize that while values can have a single owner, it’s possible for many parts
of the program to share access to those values.

4.1 Implementing a mock CubeSat ground station
Our strategy for this chapter is to use an example that compiles. Then we’ll make a
minor change that triggers an error that appears to emerge without any adjustment to
the program’s flow. Working through the fixes to those issues should make the con-
cepts more complete.

 The learning example for the chapter is a CubeSat constellation. If you’ve never
encountered that phrase before, here are some definitions:

 CubeSat—A miniature artificial satellite, as compared to a conventional satellite,
that has increasingly expanded the accessibility of space research.

 Ground station—An intermediary between the operators and the satellites them-
selves. It listens on a radio, checking the status of every satellite in the constella-
tion and transmitting messages to and fro. When introduced in our code, it acts
as the gateway between the user and the satellites.

 Constellation—The collective noun for satellites in orbit.

Figure 4.1 shows several CubeSats orbiting our ground station.

Ground station Figure 4.1 CubeSats in orbit

109Implementing a mock CubeSat ground station

For now
our Cu

fu
perfe

th
In figure 4.1, we have three CubeSats. To model this, we’ll create a variable for each.
This model can happily implement integers for the moment. We don’t need to model
the ground station explicitly because we’re not yet sending messages around the con-
stellations. We’ll omit that model for now. These are the variables:

let sat_a = 0;
let sat_b = 1;
let sat_c = 2;

To check on the status of each of our satellites, we’ll use a stub function and an enum
to represent potential status messages:

#[derive(Debug)]
enum StatusMessage {
 Ok,
}

fn check_status(sat_id: u64) -> StatusMessage {
 StatusMessage::Ok
}

The check_status() function would be extremely complicated in a production sys-
tem. For our purposes, though, returning the same value every time is perfectly suffi-
cient. Pulling these two snippets into a whole program that “checks” our satellites
twice, we end up with something like the following listing. You’ll find this code in the
file ch4/ch4-check-sats-1.rs.

 1 #![allow(unused_variables)]
 2
 3 #[derive(Debug)]
 4 enum StatusMessage {
 5 Ok,
 6 }
 7
 8 fn check_status(sat_id: u64) -> StatusMessage {
 9 StatusMessage::Ok
10 }
11
12 fn main () {
13 let sat_a = 0;
14 let sat_b = 1;
15 let sat_c = 2;
16
17 let a_status = check_status(sat_a);
18 let b_status = check_status(sat_b);
19 let c_status = check_status(sat_c);
20 println!("a: {:?}, b: {:?}, c: {:?}", a_status, b_status, c_status);
21
22 // "waiting" ...
23 let a_status = check_status(sat_a);

Listing 4.1 Checking the status of our integer-based CubeSats

, all of
beSats
nction
ctly all
e time.

Each satellite variable
is represented by an
integer.

110 CHAPTER 4 Lifetimes, ownership, and borrowing
24 let b_status = check_status(sat_b);
25 let c_status = check_status(sat_c);
26 println!("a: {:?}, b: {:?}, c: {:?}", a_status, b_status, c_status);
27 }

Running the code in listing 4.1 should be fairly uneventful. The code compiles, albeit
begrudgingly. We encounter the following output from our program:

a: Ok, b: Ok, c: Ok
a: Ok, b: Ok, c: Ok

4.1.1 Encountering our first lifetime issue

Let’s move closer to idiomatic Rust by introducing type safety. Instead of integers, let’s
create a type to model our satellites. A real implementation of a CubeSat type would
probably include lots of information about its position, its RF frequency band, and
more. In the following listing, we stick with only recording an identifier.

#[derive(Debug)]
struct CubeSat {
 id: u64,
}

Now that we have a struct definition, let’s inject it into our code. The next listing will
not compile (yet). Understanding the details of why it won’t is the goal of much of this
chapter. The source for this listing is in ch4/ch4-check-sats-2.rs.

 1 #[derive(Debug)]
 2 struct CubeSat {
 3 id: u64,
 4 }
 5
 6 #[derive(Debug)]
 7 enum StatusMessage {
 8 Ok,
 9 }
10
11 fn check_status(
12 sat_id: CubeSat
13) -> StatusMessage {
14 StatusMessage::Ok
15 }
16
17 fn main() {
18 let sat_a = CubeSat { id: 0 };
19 let sat_b = CubeSat { id: 1 };
20 let sat_c = CubeSat { id: 2 };
21

Listing 4.2 Modeling a CubeSat as its own type

Listing 4.3 Checking the status of our integer-based CubeSats

Modification 1
adds the
definition.

Modification 2 uses
the new type within
check_status().

Modification 3
creates three
new instances.

111Implementing a mock CubeSat ground station
22 let a_status = check_status(sat_a);
23 let b_status = check_status(sat_b);
24 let c_status = check_status(sat_c);
25 println!("a: {:?}, b: {:?}, c: {:?}", a_status, b_status, c_status);
26
27 // "waiting" ...
28 let a_status = check_status(sat_a);
29 let b_status = check_status(sat_b);
30 let c_status = check_status(sat_c);
31 println!("a: {:?}, b: {:?}, c: {:?}", a_status, b_status, c_status);
32 }

When you attempt to compile the code for listing 4.3, you will receive a message simi-
lar to the following (which has been edited for brevity):

error[E0382]: use of moved value: `sat_a`
 --> code/ch4-check-sats-2.rs:26:31
 |
20 | let a_status = check_status(sat_a);
 | ----- value moved here
...
26 | let a_status = check_status(sat_a);
 | ^^^^^ value used here after move
 |
 = note: move occurs because `sat_a` has type `CubeSat`,
 = which does not implement the `Copy` trait

...

error: aborting due to 3 previous errors

To trained eyes, the compiler’s message is helpful. It tells us exactly where the problem
is and provides us with a recommendation on how to fix it. To less experienced eyes, it’s
significantly less useful. We are using a “moved” value and are fully advised to imple-
ment the Copy trait on CubeSat. Huh? It turns out that although it is written in English,
the term move means something very specific within Rust. Nothing physically moves.

 Movement within Rust code refers to movement of ownership, rather than the
movement of data. Ownership is a term used within the Rust community to refer to
the compile-time process that checks that every use of a value is valid and that every
value is destroyed cleanly.

 Every value in Rust is owned. In both listings 4.1 and 4.3, sat_a, sat_b, and sat_c
own the data that these refer to. When calls to check_status() are made, ownership
of the data moves from the variables in the scope of main() to the variable sat_id
within the check_status() function. The significant difference is that listing 4.3 places
that integer within a CubeSat struct.1 This type change alters the semantics of how the
program behaves.

1 Remember the phrase zero-cost abstractions? One of the ways this manifests is by not adding extra data around
values within structs.

Lines removed
for brevity

112 CHAPTER 4 Lifetimes, ownership, and borrowing

s
for
 The next listing provides a stripped-down version of the main() function from list-
ing 4.3. It is centered on sat_a and attempts to show how ownership moves from
main() into check_status().

fn main() {
 let sat_a = CubeSat { id: 0 };
 // ...

 let a_status = check_status(sat_a);
 // ...

 // "waiting" ...
 let a_status = check_status(sat_a);
 // ...
}

Figure 4.2 provides a visual walk-through of the interrelated processes of control flow,
ownership, and lifetimes. During the call to check_status(sat_a), ownership moves
to the check_status() function. When check_status() returns a StatusMessage, it
drops the sat_a value. The lifetime of sat_a ends here. Yet, sat_a remains in the
local scope of main() after the first call to check_status(). Attempting to access that
variable will incur the wrath of the borrow checker.

 The distinction between a value’s lifetime and its scope—which is what many pro-
grammers are trained to rely on—can make things difficult to disentangle. Avoiding
and overcoming this type of issue makes up the bulk of this chapter. Figure 4.2 helps
to shed some light on this.

4.1.2 Special behavior of primitive types

Before carrying on, it might be wise to explain why listing 4.1 compiled at all. Indeed,
the only change that we made in listing 4.3 was to wrap our satellite variables in a cus-
tom type. As it happens, primitive types in Rust have special behavior. These imple-
ment the Copy trait.

Listing 4.4 Extract of listing 4.3, focusing on main()

Rebinding is legal when values are not borrowed
If you have experience with programming languages such as JavaScript (from 2015
onward), you may have been surprised to see that the variables for each of the
CubeSats were redefined in listing 4.3. In that listing on line 20, a_status is assigned
to the result of the first call to check_status(sat_a). On line 26, it is reassigned
to the result of the second call. The original value is overwritten.

This is legal Rust code, but one must be aware of ownership issues and lifetime here
too. It’s possible in this context because there are no live borrows to contend with.
Attempting to overwrite a value that’s still available from elsewhere in the program
causes the compiler to refuse to compile your program.

Ownership originates
here at the creation of
the CubeSat object.

Lines
kipped
brevity

Ownership of the object
moves to check_status() but
is not returned to main().

At line 27, sat_a is no longer
the owner of the object,
making access invalid.

113Implementing a mock CubeSat ground station
Types implementing Copy are duplicated at times that would otherwise be illegal. This
provides some day-to-day convenience at the expense of adding a trap for newcomers.
As you grow out from toy programs using integers, your code suddenly breaks.

 Formally, primitive types are said to possess copy semantics, whereas all other types
have move semantics. Unfortunately, for learners of Rust, that special case looks like the
default case because beginners typically encounter primitive types first. Listings 4.5
and 4.6 illustrate the difference between these two concepts. The first compiles and
runs; the other does not. The only difference is that these listings use different types.
The following listing shows not only the primitive types but also the types that imple-
ment Copy.

 1 fn use_value(_val: i32) {
 2 }
 3
 4 fn main() {
 5 let a = 123 ;
 6 use_value(a);
 7

Listing 4.5 The copy semantics of Rust’s primitive types

main()

Lifetime of sat_a

Deleting owned values

at the end of the owner’s

scope is implicit. It does

not appear in source code.

Ownership moves

to .check_status()

Created in

and owned by

main()

Program flow of listing 4.4

let sat_a = CubeSat { }

check_status(sat_a)

drop(sat_a)

return StatusMessage::Ok

check_status(sat_a)

drop(sat_a)

return StatusMessage::Ok

Accessing again is no longer valid;sat_a

this code will not compile.

Figure 4.2 Visual explanation
of Rust’s ownership movement

use_value() takes ownership
of the _val argument. The
use_value() function is
generic as it’s used in
the next example.

114 CHAPTER 4 Lifetimes, ownership, and borrowing
 8 println!("{}", a);
 9
10 }

The following listing focuses on those types that do not implement the Copy trait.
When used as an argument to a function that takes ownership, values cannot be
accessed again from the outer scope.

 1 fn use_value(_val: Demo) {
 2 }
 3
 4 struct Demo {
 5 a: i32,
 6 }
 7
 8 fn main() {
 9 let demo = Demo { a: 123 };
10 use_value(demo);
11
12 println!("{}", demo.a);
13 }

4.2 Guide to the figures in this chapter
The figures used in this chapter use a bespoke notation to illustrate the three interre-
lated concepts of scope, lifetimes, and ownership. Figure 4.3 illustrates this notation.

Listing 4.6 The move semantics of types not implementing Copy

It’s perfectly legal to access a
after use_value() has returned.

use_value() takes
ownership of _val.

It’s illegal to access
demo.a, even after
use_value() has returned.

main()

check_status()

Symbols

sat_a

sat_b

sat_c

base

StatusMessage::Ok

Console

Actions

Function call Arguments

Return values

fn() Function name

Print to console

Create value

Delete value

Symbol appears

Symbol struck through

Example main() is called.

base sat_a sat_b, , ,
and are created.sat_c

sat_c is the sole
argument to .check_status()

base sat_a sat_b, , ,
and are deleted.sat_c

A message is printed
to the console.

A StatusMessage::OK

is created, then deleted.

sat_c is returned.

Figure 4.3 How to interpret the figures in this chapter

115How ownership moves
4.3 What is an owner? Does it have any responsibilities?
In the world of Rust, the notion of ownership is rather limited. An owner cleans up
when its values’ lifetimes end.

 When values go out of scope or their lifetimes end for some other reason, their
destructors are called. A destructor is a function that removes traces of the value from
the program by deleting references and freeing memory. You won’t find a call to any
destructors in most Rust code. The compiler injects that code itself as part of the pro-
cess of tracking every value’s lifetime.

 To provide a custom destructor for a type, we implement Drop. This typically is
needed in cases where we have used unsafe blocks to allocate memory. Drop has one
method, drop(&mut self), that you can use to conduct any necessary wind-up activities.

 An implication of this system is that values cannot outlive their owner. This kind of
situation can make data structures built with references, such as trees and graphs, feel
slightly bureaucratic. If the root node of a tree is the owner of the whole tree, it can’t
be removed without taking ownership into account.

 Finally, unlike the Lockean notion of personal property, ownership does not imply
control or sovereignty. In fact, the “owners” of values do not have special access to
their owned data. Nor do these have the ability to restrict others from trespassing.
Owners don’t get a say on other sections of code borrowing their values.

4.4 How ownership moves
There are two ways to shift ownership from one variable to another within a Rust pro-
gram. The first is by assignment.2 The second is by passing data through a function
barrier, either as an argument or a return value. Revisiting our original code from list-
ing 4.3, we can see that sat_a starts its life with ownership over a CubeSat object:

fn main() {
 let sat_a = CubeSat { id: 0 };
 // ...

The CubeSat object is then passed into check_status() as an argument. This moves
ownership to the local variable sat_id:

fn main() {
 let sat_a = CubeSat { id: 0 };
 // ...
 let a_status = check_status(sat_a);
 // ...

Another possibility is that sat_a relinquishes its ownership to another variable within
main(). That would look something like this:

2 Within the Rust community, the term variable binding is preferred because it is more technically correct.

116 CHAPTER 4 Lifetimes, ownership, and borrowing
fn main() {
 let sat_a = CubeSat { id: 0 };
 // ...
 let new_sat_a = sat_a;
 // ...

Lastly, if there is a change in the check_status() function signature, it too could pass
ownership of the CubeSat to a variable within the calling scope. Here is our original
function:

fn check_status(sat_id: CubeSat) -> StatusMessage {
 StatusMessage::Ok
}

And here is an adjusted function that achieves its message notification through a side
effect:

fn check_status(sat_id: CubeSat) -> CubeSat {

 println!("{:?}: {:?}", sat_id,
 StatusMessage::Ok);
 sat_id

}

With the adjusted check_status() function used in conjunction with a new main(),
it’s possible to send ownership of the CubeSat objects back to their original variables.
The following listing shows the code. Its source is found in ch4/ch4-check-sats-3.rs.

 1 #![allow(unused_variables)]
 2
 3 #[derive(Debug)]
 4 struct CubeSat {
 5 id: u64,
 6 }
 7
 8 #[derive(Debug)]
 9 enum StatusMessage {
10 Ok,
11 }
12
13 fn check_status(sat_id: CubeSat) -> CubeSat {
14 println!("{:?}: {:?}", sat_id, StatusMessage::Ok);
15 sat_id
16 }
17
18 fn main () {
19 let sat_a = CubeSat { id: 0 };
20 let sat_b = CubeSat { id: 1 };
21 let sat_c = CubeSat { id: 2 };

Listing 4.7 Returning ownership back to the original scope

Uses the Debug formatting syntax
as our types have been annotated
with #[derive(Debug)]

Returns a value by omitting the
semicolon at the end of the last line

117How ownership moves
22
23 let sat_a = check_status(sat_a);
24 let sat_b = check_status(sat_b);
25 let sat_c = check_status(sat_c);
26
27 // "waiting" ...
28
29 let sat_a = check_status(sat_a);
30 let sat_b = check_status(sat_b);
31 let sat_c = check_status(sat_c);
32 }

The output from the new main() function in listing 4.7 now looks like this:

CubeSat { id: 0 }: Ok
CubeSat { id: 1 }: Ok
CubeSat { id: 2 }: Ok
CubeSat { id: 0 }: Ok
CubeSat { id: 1 }: Ok
CubeSat { id: 2 }: Ok

Figure 4.4 shows a visual overview of the ownership movements within listing 4.7.

Now that the return value
of check_status() is the
original sat_a, the new
let binding is reset.

main()

check_status()

sat_a

check_status()

check_status()

Ownership movements

sat_b sat_c

Program flow

During initalization,
three CubeSat instances
are created.

At each call to
check_status(),
ownership of one of
the instances moves
into the function’s
local variable sat_id

and then returns back
to .main()

sat_id

sat_a

sat_b

sat_id

m
oves tom
oves to

m
ovesto

m
ovesto

sat_c

sat_id

m
oves tom
oves to

Figure 4.4 The ownership changes within listing 4.7

118 CHAPTER 4 Lifetimes, ownership, and borrowing
4.5 Resolving ownership issues
Rust’s ownership system is excellent. It provides a route to memory safety without
needing a garbage collector. There is a “but,” however.

 The ownership system can trip you up if you don’t understand what’s happening.
This is particularly the case when you bring the programming style from your past
experience to a new paradigm. Four general strategies can help with ownership issues:

 Use references where full ownership is not required.
 Duplicate the value.
 Refactor code to reduce the number of long-lived objects.
 Wrap your data in a type designed to assist with movement issues.

To examine each of these strategies, let’s extend the capabilities of our satellite net-
work. Let’s give the ground station and our satellites the ability to send and receive
messages. Figure 4.5 shows what we want to achieve: create a message at Step 1, then
transfer it at Step 2. After Step 2, no ownership issues should arise.

Ignoring the details of implementing the methods, we want to avoid code that looks
like the following. Moving ownership of sat_a to a local variable in base.send() ends
up hurting us. That value will no longer be accessible for the rest of main():

base.send(sat_a, "hello!");
sat_a.recv();

To get to a “toy” implementation, we need a few more types to help us out somewhat.
In listing 4.8, we add a new field, mailbox, to CubeSat. CubeSat.mailbox is a Mailbox
struct that contains a vector of Messages within its messages field. We alias String to
Message, giving us the functionality of the String type without needing to implement
it ourselves.

 1 #[derive(Debug)]
 2 struct CubeSat {
 3 id: u64,

Listing 4.8 Adding a Mailbox type to our system

Step 1:

base.send()

Step 2:

sat_a.recv()

Figure 4.5 Goal: Enable messages
to be sent while avoiding ownership
issues

Moves ownership of sat_a to a
local variable in base.send()

119Resolving ownership issues
 4 mailbox: Mailbox,
 5 }
 6
 7 #[derive(Debug)]
 8 enum StatusMessage {
 9 Ok,
10 }
11
12 #[derive(Debug)]
13 struct Mailbox {
14 messages: Vec<Message>,
15 }
16
17 type Message = String;

Creating a CubeSat instance has become slightly more complicated. To create one now,
we also need to create its associated Mailbox and the mailbox’s associated Vec<Message>.
The following listing shows this addition.

CubeSat { id: 100, mailbox: Mailbox { messages: vec![] } }

Another type to add is one that represents the ground station itself. We will use a bare
struct for the moment, as shown in the following listing. That allows us to add meth-
ods to it and gives us the option of adding a mailbox as a field later on as well.

struct GroundStation;

Creating an instance of GroundStation should be trivial for you now. The following
listing shows this implementation.

GroundStation {};

Now that we have our new types in place, let’s put these to work. You’ll see how in the
next section.

4.5.1 Use references where full ownership is not required

The most common change you will make to your code is to reduce the level of access
you require. Instead of requesting ownership, you can use a “borrow” in your function
definitions. For read-only access, use & T. For read-write access, use &mut T.

 Ownership might be needed in advanced cases, such as when functions want to
adjust the lifetime of their arguments. Table 4.1 compares the two different approaches.

Listing 4.9 Creating a new CubeSat with Mailbox

Listing 4.10 Defining a struct to represent our ground station

Listing 4.11 Creating a new ground station

120 CHAPTER 4 Lifetimes, ownership, and borrowing
Sending messages will eventually be wrapped up in a method, but with essence func-
tions, implementing that modifies the internal mailbox of the CubeSat. For simplic-
ity’s sake, we’ll return () and hope for the best in case of transmission difficulties
caused by solar winds.

 The following snippet shows the flow that we want to end up with. The ground sta-
tion can send a message to sat_a with its send() method, and sat_a then receives the
message with its recv() method:

base.send(sat_a, "hello!".to_string());

let msg = sat_a.recv();
println!("sat_a received: {:?}", msg); // -> Option("hello!")

The next listing shows the implementations of these methods. To achieve that flow,
add the implementations to GroundStation and CubeSat types.

 1 impl GroundStation {
 2 fn send(
 3 &self,
 4 to: &mut CubeSat,
 5 msg: Message,
 6) {
 7 to.mailbox.messages.push(msg);
 8 }
 9 }
10
11 impl CubeSat {
12 fn recv(&mut self) -> Option<Message> {
13 self.mailbox.messages.pop()
14 }
15 }

Notice that both GroundStation.send() and CubeSat.recv() require mutable access
to a CubeSat instance because both methods modify the underlying CubeSat.messages
vector. We move ownership of the message that we’re sending into the messages.push().
This provides us with some quality assurance later, notifying us if we access a message
after it’s already sent. Figure 4.6 illustrates how we can avoid ownership issues.

Table 4.1 Comparing ownership and mutable references

Using ownership Using a mutable reference

fn send(to: CubeSat, msg: Message) {
 to.mailbox.messages.push(msg);
}

fn send(to: &mut CubeSat, msg: Message) {
 to.mailbox.messages.push(msg);
}

Ownership of the to variable moves into
send(). When send() returns, to is deleted.

Adding the &mut prefix to the CubeSat type allows
the outer scope to retain ownership of data referred to
by the to variable.

Listing 4.12 Adding the GroundStation.send() and CubeSat.recv() methods

&self indicates that GroundStation.send() only requires
a read-only reference to self. The recipient takes a
mutable borrow (&mut) of the CubeSat instance, and
msg takes full ownership of its Message instance.

Ownership of the Message
instance transfers from
msg to messages.push()
as a local variable.

121Resolving ownership issues
main()

.send()

"t0: {:?}"

()

hello
there

hello
there

hello
there

hello
there

.mailbox.messages.push()

()

"t1: {:?}"

.mailbox.messages.pop()

.recv()

Option()

Option()

hello
there

hello
there

"t2: {:?}"

"msg: {:?}"

Figure 4.6 Game plan:
Use references to avoid
ownership issues.

122 CHAPTER 4 Lifetimes, ownership, and borrowing
Listing 4.13 (ch4/ch4-sat-mailbox.rs) brings together all of the code snippets in this
section thus far and prints the following output. The messages starting with t0
through t2 are added to assist your understanding of how data is flowing through
the program:

t0: CubeSat { id: 0, mailbox: Mailbox { messages: [] } }
t1: CubeSat { id: 0, mailbox: Mailbox { messages: ["hello there!"] } }
t2: CubeSat { id: 0, mailbox: Mailbox { messages: [] } }
msg: Some("hello there!")

 1 #[derive(Debug)]
 2 struct CubeSat {
 3 id: u64,
 4 mailbox: Mailbox,
 5 }
 6
 7 #[derive(Debug)]
 8 struct Mailbox {
 9 messages: Vec<Message>,
10 }
11
12 type Message = String;
13
14 struct GroundStation;
15
16 impl GroundStation {
17 fn send(&self, to: &mut CubeSat, msg: Message) {
18 to.mailbox.messages.push(msg);
19 }
20 }
21
22 impl CubeSat {
23 fn recv(&mut self) -> Option<Message> {
24 self.mailbox.messages.pop()
25 }
26 }
27
28 fn main() {
29 let base = GroundStation {};
30 let mut sat_a = CubeSat {
31 id: 0,
32 mailbox: Mailbox {
33 messages: vec![],
34 },
35 };
36
37 println!("t0: {:?}", sat_a);
38
39 base.send(&mut sat_a,
40 Message::from("hello there!"));

Listing 4.13 Avoiding ownership issues with references

We don’t have a
completely ergonomic
way to create Message
instances yet. Instead,
we’ll take advantage of
the String.from() method
that converts &str to
String (aka Message).

123Resolving ownership issues
41
42 println!("t1: {:?}", sat_a);
43
44 let msg = sat_a.recv();
45 println!("t2: {:?}", sat_a);
46
47 println!("msg: {:?}", msg);
48 }

4.5.2 Use fewer long-lived values

If we have a large, long-standing object such as a global variable, it can be somewhat
unwieldy to keep this around for every component of your program that needs it.
Rather than using an approach involving long-standing objects, consider making objects
that are more discrete and ephemeral. Ownership issues can sometimes be resolved
by considering the design of the overall program.

 In our CubeSat case, we don’t need to handle much complexity at all. Each
of our four variables—base, sat_a, sat_b, and sat_c—live for the duration of
main(). In a production system, there can be hundreds of different components
and many thousands of interactions to manage. To increase the manageability
of this kind of scenario, let’s break things apart. Figure 4.7 presents the game plan
for this section.

 To implement this kind of strategy, we will create a function that returns CubeSat
identifiers. That function is assumed to be a black box that’s responsible for commu-
nicating with some store of identifiers, such as a database. When we need to communi-
cate with a satellite, we’ll create a new object, as the following code snippet shows. In
this way, there is no requirement for us to maintain live objects for the whole of the
program’s duration. It also has the dual benefit that we can afford to transfer owner-
ship of our short-lived variables to other functions:

fn fetch_sat_ids() -> Vec<u64> {
 vec![1,2,3]
}

We’ll also create a method for GroundStation. This method allows us to create a
CubeSat instance on demand once:

impl GroundStation {
 fn connect(&self, sat_id: u64) -> CubeSat {
 CubeSat { id: sat_id, mailbox: Mailbox { messages: vec![] } }
 }
}

Now we are a bit closer to our intended outcome. Our main function looks like the
following code snippet. In effect, we’ve implemented the first half of figure 4.7.

Returns a vector
of CubeSat IDs

124 CHAPTER 4 Lifetimes, ownership, and borrowing
main()

.send()

()

hello
there

hello
there

hello
there

hello
there

hello
there

hello
there

.mailbox.messages.push()

()

.mailbox.messages.pop()

.recv()

Option()

Option()

"msg: {:?}"

sat_ids()

Vec<u64>

for {

}

.connect()

0
(then 1 & 2)

(then &)

(then &)

(...)

()

for {

}

()Option()hello
there

Figure 4.7 Game plan: Short-lived
variables to avoid ownership issues

125Resolving ownership issues
fn main() {
 let base = GroundStation();

 let sat_ids = fetch_sat_ids();

 for sat_id in sat_ids {
 let mut sat = base.connect(sat_id);

 base.send(&mut sat, Message::from("hello"));
 }
}

But there’s a problem. Our CubeSat instances die at the end of the for loop’s scope,
along with any messages that base sends to them. To carry on with our design decision
of short-lived variables, the messages need to live somewhere outside of the CubeSat
instances. In a real system, these would live on the RAM of a device in zero gravity. In
our not-really-a-simulator, let’s put these in a buffer object that lives for the duration
of our program.

 Our message store will be a Vec<Message> (our Mailbox type defined in one of the
first code examples of this chapter). We’ll change the Message struct to add a sender
and recipient field, as the following code shows. That way our now-proxy CubeSat
instances can match their IDs to receive messages:

#[derive(Debug)]
struct Mailbox {
 messages: Vec<Message>,
}

#[derive(Debug)]
struct Message {
 to: u64,
 content: String,
}

We also need to reimplement sending and receiving messages. Up until now, CubeSat
objects have had access to their own mailbox object. The central GroundStation also
had the ability to sneak into those mailboxes to send messages. That needs to change
now because only one mutable borrow can exist per object.

 In the modifications in listing 4.14, the Mailbox instance is given the ability to
modify its own message vector. When any of the satellites transmit messages, these
take a mutable borrow to the mailbox. These then defer the delivery to the mailbox
object. According to this API, although our satellites are able to call Mailbox methods,
these are not allowed to touch any internal Mailbox data themselves.

 1 impl GroundStation {
 2 fn send(
 3 &self,

Listing 4.14 Modifications to Mailbox

126 CHAPTER 4 Lifetimes, ownership, and borrowing
 4 mailbox: &mut Mailbox,
 5 to: &CubeSat,
 6 msg: Message,
 7) {
 8 mailbox.post(to, msg);
 9 }
10 }
11
12 impl CubeSat {
13 fn recv(
14 &self,
15 mailbox: &mut Mailbox
16) -> Option<Message> {
17 mailbox.deliver(&self)
18 }
19 }
20
21 impl Mailbox {
22 fn post(&mut self, msg: Message) {
23 self.messages.push(msg);
24 }
25
26 fn deliver(
27 &mut self,
28 recipient: &CubeSat
29) -> Option<Message> {
30 for i in 0..self.messages.len() {
31 if self.messages[i].to == recipient.id {
32 let msg = self.messages.remove(i);
33 return Some(msg);
34 }
35 }
36
37 None
38 }
39 }

NOTE Astute readers of listing 4.14 will notice a strong anti-pattern. On line 32,
the self.messages collection is modified while it is being iterated over. In
this instance, this is legal because of the return on the next line. The com-
piler can prove that another iteration will not occur and allows the mutation
to proceed.

With that groundwork in place, we’re now able to fully implement the strategy laid out
in figure 4.7. Listing 4.15 (ch4/ch4-short-lived-strategy.rs) is the full implementation
of the short-lived variables game plan. The output from a compiled version of that list-
ing follows:

CubeSat { id: 1 }: Some(Message { to: 1, content: "hello" })
CubeSat { id: 2 }: Some(Message { to: 2, content: "hello" })
CubeSat { id: 3 }: Some(Message { to: 3, content: "hello" })

Calls Mailbox.post() to
send messages, yielding
ownership of a Message

Calls Mailbox.deliver() to
receive messages, gaining
ownership of a Message

Mailbox.post() requires
mutable access to itself
and ownership over a
Message.

Mailbox.deliver() requires a
shared reference to a CubeSat
to pull out its id field.

When we find a message,
returns early with the
Message wrapped in Some
per the Option type

When no messages are
found, returns None

127Resolving ownership issues
 1 #![allow(unused_variables)]
 2
 3 #[derive(Debug)]
 4 struct CubeSat {
 5 id: u64,
 6 }
 7
 8 #[derive(Debug)]
 9 struct Mailbox {
10 messages: Vec<Message>,
11 }
12
13 #[derive(Debug)]
14 struct Message {
15 to: u64,
16 content: String,
17 }
18
19 struct GroundStation {}
20
21 impl Mailbox {
22 fn post(&mut self, msg: Message) {
23 self.messages.push(msg);
24 }
25
26 fn deliver(&mut self, recipient: &CubeSat) -> Option<Message> {
27 for i in 0..self.messages.len() {
28 if self.messages[i].to == recipient.id {
29 let msg = self.messages.remove(i);
30 return Some(msg);
31 }
32 }
33
34 None
35 }
36 }
37
38 impl GroundStation {
39 fn connect(&self, sat_id: u64) -> CubeSat {
40 CubeSat {
41 id: sat_id,
42 }
43 }
44
45 fn send(&self, mailbox: &mut Mailbox, msg: Message) {
46 mailbox.post(msg);
47 }
48 }
49
50 impl CubeSat {
51 fn recv(&self, mailbox: &mut Mailbox) -> Option<Message> {
52 mailbox.deliver(&self)
53 }

Listing 4.15 Implementing the short-lived variables strategy

128 CHAPTER 4 Lifetimes, ownership, and borrowing
54 }
55 fn fetch_sat_ids() -> Vec<u64> {
56 vec![1,2,3]
57 }
58
59
60 fn main() {
61 let mut mail = Mailbox { messages: vec![] };
62
63 let base = GroundStation {};
64
65 let sat_ids = fetch_sat_ids();
66
67 for sat_id in sat_ids {
68 let sat = base.connect(sat_id);
69 let msg = Message { to: sat_id, content: String::from("hello") };
70 base.send(&mut mail, msg);
71 }
72
73 let sat_ids = fetch_sat_ids();
74
75 for sat_id in sat_ids {
76 let sat = base.connect(sat_id);
77
78 let msg = sat.recv(&mut mail);
79 println!("{:?}: {:?}", sat, msg);
80 }
81 }

4.5.3 Duplicate the value

Having a single owner for every object can mean significant up-front planning and/or
refactoring of your software. As we saw in the previous section, it can be quite a lot of
work to wriggle out of an early design decision.

 One alternative to refactoring is to simply copy values. Doing this often is typically
frowned upon, however, but it can be useful in a pinch. Primitive types like integers
are a good example of that. Primitive types are cheap for a CPU to duplicate—so cheap,
in fact, that Rust always copies these if it would otherwise worry about ownership
being moved.

 Types can opt into two modes of duplication: cloning and copying. Each mode is
provided by a trait. Cloning is defined by std::clone::Clone, and the copying
mode is defined by std::marker::Copy. Copy acts implicitly. Whenever ownership
would otherwise be moved to an inner scope, the value is duplicated instead. (The
bits of object a are replicated to create object b.) Clone acts explicitly. Types that
implement Clone have a .clone() method that is permitted to do whatever it needs
to do to create a new value. Table 4.2 outlines the major differences between the two
modes.

129Resolving ownership issues
So why do Rust programmers not always use Copy? There are three main reasons:

 The Copy trait implies that there will only be negligible performance impact. This is true
for numbers but not true for types that are arbitrarily large, such as String.

 Because Copy creates exact copies, it cannot treat references correctly. Naïvely copying a
reference to T would (attempt to) create a second owner of T. That would cause
problems later on because there would be multiple attempts to delete T as each
reference is deleted.

 Some types overload the Clone trait. This is done to provide something similar to,
yet different from, creating duplicates. For example, std::rc::Rc<T> uses Clone
to create additional references when .clone() is called.

NOTE Throughout your time with Rust, you will normally see the std::clone
::Clone and std::marker::Copy traits referred to simply as Clone and Copy.
These are included in every crate’s scope via the standard prelude.

IMPLEMENTING COPY

Let’s go back to our original example (listing 4.3), which caused the original movement
issue. Here it is replicated for convenience, with sat_b and sat_c removed for brevity:

#[derive(Debug)]
struct CubeSat {
 id: u64,
}

#[derive(Debug)]
enum StatusMessage {
 Ok,
}

fn check_status(sat_id: CubeSat) -> StatusMessage {
 StatusMessage::Ok
}

fn main() {
 let sat_a = CubeSat { id: 0 };

 let a_status = check_status(sat_a);
 println!("a: {:?}", a_status);

Table 4.2 Distinguishing cloning from copying

Cloning (std::clone::Clone) Copying (std::marker::Copy)

 May be slow and expensive.
 Never implicit. A call to the .clone() method is

always required.
 May differ from original. Crate authors define what

cloning means for their types.

 Always fast and cheap.
 Always implicit.
 Always identical. Copies are bit-for-bit

duplicates of the original value.

130 CHAPTER 4 Lifetimes, ownership, and borrowing
 let a_status = check_status(sat_a);
 println!("a: {:?}", a_status);
}

At this early stage, our program consisted of types that contain types, which them-
selves implement Copy. That’s good because it means implementing it ourselves is
fairly straightforward, as the following listing shows.

#[derive(Copy,Clone,Debug)]
struct CubeSat {
 id: u64,
}

#[derive(Copy,Clone,Debug)]
enum StatusMessage {
 Ok,
}

The following listing shows how it’s possible to implement Copy manually. The impl
blocks are impressively terse.

impl Copy for CubeSat { }

impl Copy for StatusMessage { }

impl Clone for CubeSat {
 fn clone(&self) -> Self {
 CubeSat { id: self.id }
 }
}

impl Clone for StatusMessage {
 fn clone(&self) -> Self {
 *self
 }
}

USING CLONE AND COPY

Now that we know how to implement them, let’s put Clone and Copy to work. We’ve
discussed that Copy is implicit. When ownership would otherwise move, such as during
assignment and passing through function barriers, data is copied instead.

 Clone requires an explicit call to .clone(). That’s a useful marker in non-trivial
cases, such as in listing 4.18, because it warns the programmer that the process may be
expensive. You’ll find the source for this listing in ch4/ch4-check-sats-clone-and-copy-
traits.rs.

Listing 4.16 Deriving Copy for types made up of types that implement Copy

Listing 4.17 Implementing the Copy trait manually

The second call to check_status(sat_a)
is the location of error.

#[derive(Copy,Clone,Debug)]
tells the compiler to add an
implementation of each of
the traits.

Implementing Copy
requires an implementation
of Clone.

If desired, we can write out
the creation of a new object
ourselves…

…but often we can simply
dereference self.

131Resolving ownership issues
 1 #[derive(Debug,Clone,Copy)]
 2 struct CubeSat {
 3 id: u64,
 4 }
 5
 6 #[derive(Debug,Clone,Copy)]
 7 enum StatusMessage {
 8 Ok,
 9 }
10
11 fn check_status(sat_id: CubeSat) -> StatusMessage {
12 StatusMessage::Ok
13 }
14
15 fn main () {
16 let sat_a = CubeSat { id: 0 };
17
18 let a_status = check_status(sat_a.clone());
19 println!("a: {:?}", a_status.clone());
20
21 let a_status = check_status(sat_a);
22 println!("a: {:?}", a_status);
23 }

4.5.4 Wrap data within specialty types

So far in this chapter, we have discussed Rust’s ownership system and ways to navigate
the constraints it imposes. A final strategy that is quite common is to use wrapper types,
which allow more flexibility than what is available by default. These, however, incur costs
at runtime to ensure that Rust’s safety guarantees are maintained. Another way to
phrase this is that Rust allows programmers to opt in to garbage collection.3

 To explain the wrapper type strategy, let’s introduce a wrapper type: std:rc::Rc.
std:rc::Rc takes a type parameter T and is typically referred to as Rc<T>. Rc<T> reads
as “R. C. of T” and stands for “a reference-counted value of type T.” Rc<T> provides
shared ownership of T. Shared ownership prevents T from being removed from memory
until every owner is removed.

 As indicated by the name, reference counting is used to track valid references. As each
reference is created, an internal counter increases by one. When a reference is
dropped, the count decreases by one. When the count hits zero, T is also dropped.

 Wrapping T involves a calling Rc::new(). The following listing, at ch4/ch4-rc-
groundstation.rs, shows this approach.

Listing 4.18 Using Clone and Copy

3 Garbage collection (often abbreviated as GC) is a strategy for memory management used by many program-
ming languages, including Python and JavaScript, and all languages built on the JVM (Java, Scala, Kotlin) or
the CLR (C#, F#).

Copy implies
Clone, so we
can use either
trait later.

Cloning each object is as
easy as calling .clone().

Copy works
as expected.

132 CHAPTER 4 Lifetimes, ownership, and borrowing

"

y
 1 use std::rc::Rc;
 2
 3 #[derive(Debug)]
 4 struct GroundStation {}
 5
 6 fn main() {
 7 let base = Rc::new(GroundStation {});
 8
 9 println!("{:?}", base);
10 }

Rc<T> implements Clone. Every call to base.clone() increments an internal counter.
Every Drop decrements that counter. When the internal counter reaches zero, the
original instance is freed.

 Rc<T> does not allow mutation. To permit that, we need to wrap our wrapper.
Rc<RefCell<T>> is a type that can be used to perform interior mutability, first intro-
duced at the end of of chapter 3 in section 3.4.1. An object that has interior mutability
presents an immutable façade while internal values are being modified.

 In the following example, we can modify the variable base despite being marked as
an immutable variable. It’s possible to visualize this by looking at the changes to the
internal base.radio_freq:

base: RefCell { value: GroundStation { radio_freq: 87.65 } }
base_2: GroundStation { radio_freq: 75.31 }
base: RefCell { value: GroundStation { radio_freq: 75.31 } }
base: RefCell { value: "<borrowed>" }
base_3: GroundStation { radio_freq: 118.52000000000001 }

The following listing, found at ch4/ch4-rc-refcell-groundstation.rs, uses Rc<RefCell<T>>
to permit mutation within an object marked as immutable. Rc<RefCell<T>> incurs
some additional runtime cost over Rc<T> while allowing shared read/write access to T.

 1 use std::rc::Rc;
 2 use std::cell::RefCell;
 3
 4 #[derive(Debug)]
 5 struct GroundStation {
 6 radio_freq: f64 // Mhz
 7 }
 8
 9 fn main() {
 10 let base: Rc<RefCell<GroundStation>> = Rc::new(RefCell::new(
11 GroundStation {
12 radio_freq: 87.65
13 }
14));

Listing 4.19 Wrapping a user-defined type in Rc

Listing 4.20 Using Rc<RefCell<T>> to mutate an immutable object

The use keyword brings
modules from the standard
library into local scope.

Wrapping involves enclosing
the GroundStation instance
in a call to Rc::new().

Prints
“GroundStation”

value: "<borrowed>
indicates that base is
mutably borrowed
somewhere else and
is no longer generall
accessible.

133Summary
15
16 println!("base: {:?}", base);
17
18 {
19 let mut base_2 = base.borrow_mut();
20 base_2.radio_freq -= 12.34;
21 println!("base_2: {:?}", base_2);
22 }
23
24 println!("base: {:?}", base);
25
26 let mut base_3 = base.borrow_mut();
27 base_3.radio_freq += 43.21;
28
29 println!("base: {:?}", base);
30 println!("base_3: {:?}", base_3);
31 }

There are two things to note from this example:

 Adding more functionality (e.g., reference-counting semantics rather than move
semantics) to types by wrapping these in other types typically reduces their run-
time performance.

 If implementing Clone would be prohibitively expensive, Rc<T> can be a handy
alternative. This allows two places to “share” ownership.

NOTE Rc<T> is not thread-safe. In multithreaded code, it’s much better to
replace Rc<T> with Arc<T> and Rc<RefCell<T>> with Arc<Mutex<T>>. Arc
stands for atomic reference counter.

Summary
 A value’s owner is responsible for cleaning up after that value when its lifetime

ends.
 A value’s lifetime is the period when accessing that value is valid behavior. Attempt-

ing to access a value after its lifetime has expired leads to code that won’t compile.
 To borrow a value means to access that value.
 If you find that the borrow checker won’t allow your program to compile, sev-

eral tactics are available to you. This often means that you will need to rethink
the design of your program.

 Use shorter-lived values rather than values that stick around for a long time.
 Borrows can be read-only or read-write. Only one read-write borrow can exist at

any one time.
 Duplicating a value can be a pragmatic way to break an impasse with the borrow

checker. To duplicate a value, implement Clone or Copy.
 It’s possible to opt in to reference counting semantics through Rc<T>.
 Rust supports a feature known as interior mutability, which enables types to pres-

ent themselves as immutable even though their values can change over time.

Introduces a new scope
where base can be
mutably borrowed

Part 2

Demystifying systems
programming

Part 2 extends your base Rust knowledge by applying Rust to examples from
the field of systems programming. Every chapter includes at least one large proj-
ect that includes a new language feature. You will build command-line utilities,
libraries, graphical applications, networked applications, and even your own oper-
ating system kernel.

Data in depth
This chapter is all about understanding how zeroes and ones can become much
larger objects like text, images, and sound. We will also touch on how computers do
computation.

 By the end of the chapter, you will have emulated a fully functional computer with
CPU, memory, and user-defined functions. You will break apart floating-point num-
bers to create a numeric data type of your own that only takes a single byte. The chap-
ter introduces a number of terms, such as endianness and integer overflow, that may not
be familiar to programmers who have never done systems programming.

5.1 Bit patterns and types
A small but important lesson is that a single bit pattern can mean different things. The
type system of a higher-level language, such as Rust, is just an artificial abstraction over
reality. Understanding this becomes important as you begin to unravel some of that
abstraction and to gain a deeper understanding of how computers work.

This chapter covers
 Learning how the computer represents data

 Building a working CPU emulator

 Creating your own numeric data type

 Understanding floating-point numbers
137

138 CHAPTER 5 Data in depth
 Listing 5.1 (in ch5-int-vs-int.rs) is an example that uses the same bit pattern to rep-
resent two different numbers. The type system—not the CPU—is what makes this dis-
tinction. The following shows the listing’s output:

a: 1100001111000011 50115
b: 1100001111000011 -15421

 1 fn main() {
 2 let a: u16 = 50115;
 3 let b: i16 = -15421;
 4
 5 println!("a: {:016b} {}", a, a);
 6 println!("b: {:016b} {}", b, b);
 7 }

The different mapping between bit strings and numbers explains part of the distinc-
tion between binary files and text files. Text files are just binary files that happen to
follow a consistent mapping between bit strings and characters. This mapping is called
an encoding. Arbitrary files don’t describe their meaning to the outside world, which
makes these opaque.

 We can take this process one step further. What happens if we ask Rust to treat a bit
pattern produced by one type as another? The following listing provides an answer.
The source code for this listing is in ch5/ch5-f32-as-u32.rs.

 1 fn main() {
 2 let a: f32 = 42.42;
 3 let frankentype: u32 = unsafe {
 4 std::mem::transmute(a)
 5 };
 6
 7 println!("{}", frankentype);
 8 println!("{:032b}", frankentype);
 9
10 let b: f32 = unsafe {
11 std::mem::transmute(frankentype)
12 };
13 println!("{}", b);
14 assert_eq!(a, b);
15 }

When compiled and run, the code from listing 5.2 produces the following output:

1110027796
01000010001010011010111000010100
42.42

Listing 5.1 The data type determines what a sequence of bits represents

Listing 5.2 Interpreting a float’s bit string as an integer

These two values have
the same bit pattern
but different types.

No semicolon here. We want the
result of this expression to feed
into the outer scope.

Views the bits of a 42.42_f32
value as a decimal integer

{:032b} means to format as a binary
via the std::fmt::Binary trait with 32
zeroes padded on the left.

Confirms that the
operation is symmetrical

139Life of an integer
Some further remarks about some of the unfamiliar Rust that listing 5.2 introduces
includes the following:

 Line 8 demonstrates a new directive to the println!() macro: {:032b}. The 032 reads
as “left-pad with 32 zeros” and the right-hand b invokes the std::fmt::Binary
trait. This contrasts with the default syntax ({}), which invokes the std::fmt
::Display trait, or the question mark syntax ({:?}), which invokes std::fmt::
Debug.

Unfortunately for us, f32 doesn’t implement std::fmt::Binary. Luckily,
Rust’s integer types do. There are two integer types guaranteed to take up the
same number of bits as f32—i32 and u32. The decision about which to choose
is somewhat arbitrary.

 Lines 3–5 perform the conversion discussed in the previous bulleted point. The std::
mem::transmute() function asks Rust to naïvely interpret an f32 as an u32 with-
out affecting any of the underlying bits. The inverse conversion is repeated later
on lines 10–12.

Mixing data types in a program is inherently chaotic, so we need to wrap these opera-
tion within unsafe blocks. unsafe tells the Rust compiler, “Stand back, I’ll take care of
things from here. I’ve got this.” It’s a signal to the compiler that you have more con-
text than it does to verify the correctness of the program.

 Using the unsafe keyword does not imply that code is inherently dangerous. For
example, it does not allow you to bypass Rust’s borrow checker. It indicates that the
compiler is not able to guarantee that the program’s memory is safe by itself. Using
unsafe means that the programmer is fully responsible for maintaining the program’s
integrity.

WARNING Some functionality allowed within unsafe blocks is more difficult
to verify than others. For example, the std::mem::transmute() function is
one of the least safe in the language. It shreds all type safety. Investigate alter-
natives before using it in your own code.

Needlessly using unsafe blocks is heavily frowned upon within the Rust community. It
can expose your software to critical security vulnerabilities. Its primary purpose is to
allow Rust to interact with external code, such as libraries written in other languages
and OS interfaces. This book uses unsafe more frequently than many projects because
its code examples are teaching tools, not industrial software. unsafe allows you to
peek at and poke at individual bytes, which is essential knowledge for people seeking
to understand how computers work.

5.2 Life of an integer
During earlier chapters, we spent some time discussing what it means for an integer to
be an i32, an u8, or an usize. Integers are like small, delicate fish. They do what they
do remarkably well, but take them outside of their natural range and they die a quick,
painful death.

140 CHAPTER 5 Data in depth
 Integers live within a fixed range. When represented inside the computer, these
occupy a fixed number of bits per type. Unlike floating-point numbers, integers can-
not sacrifice their precision to extend their bounds. Once those bits have been filled
with 1s, the only way forward is back to all 0s.

 A 16-bit integer can represent numbers between 0 and 65,535, inclusive. What hap-
pens when you want to count to 65,536? Let’s find out.

 The technical term for the class of problem that we are investigating is integer over-
flow. One of the most innocuous ways of overflowing an integer is by incrementing for-
ever. The following listing (ch5/ch5-to-oblivion.rs) is a trivial example of this.

 1 fn main() {
 2 let mut i: u16 = 0;
 3 print!("{}..", i);
 4
 5 loop {
 6 i += 1000;
 7 print!("{}..", i);
 8 if i % 10000 == 0 {
 9 print!{"\n"}
10 }
11 }
12 }

When we try to run listing 5.3, things don’t end well for our program. Let’s look at the
output:

$ rustc ch5-to-oblivion.rs && ./ch5-to-oblivion
0..1000..2000..3000..4000..5000..6000..7000..8000..9000..10000..
11000..12000..13000..14000..15000..16000..17000..18000..19000..20000..
21000..22000..23000..24000..25000..26000..27000..28000..29000..30000..
31000..32000..33000..34000..35000..36000..37000..38000..39000..40000..
41000..42000..43000..44000..45000..46000..47000..48000..49000..50000..
51000..52000..53000..54000..55000..56000..57000..58000..59000..60000..
thread 'main' panicked at 'attempt to add with overflow',
 ch5-to-oblivion.rs:5:7
note: run with `RUST_BACKTRACE=1` environment variable
 to display a backtrace
61000..62000..63000..64000..65000..

A panicked program is a dead program. Panic means that the programmer has asked
the program to do something that’s impossible. It doesn’t know what to do to proceed
and shuts itself down.

 To understand why this is such a critical class of bugs, let’s take a look at what’s
going on under the hood. Listing 5.4 (ch5/ch5-bit-patterns.rs) prints six numbers
with their bit patterns laid out in literal form. When compiled, the listing prints the
following short line:

0, 1, 2, ..., 65533, 65534, 65535

Listing 5.3 Exploring the effect of incrementing an integer past its range

141Life of an integer
Try compiling the code with optimizations enabled via rustc -O ch5-to-oblivion.rs
and running the resulting executable. The behavior is quite different. The problem
we’re interested in is what happens when there’s no more bits left. 65,536 cannot be
represented by u16.

fn main() {
 let zero: u16 = 0b0000_0000_0000_0000;
 let one: u16 = 0b0000_0000_0000_0001;
 let two: u16 = 0b0000_0000_0000_0010;
 // ...
 let sixtyfivethousand_533: u16 = 0b1111_1111_1111_1101;
 let sixtyfivethousand_534: u16 = 0b1111_1111_1111_1110;
 let sixtyfivethousand_535: u16 = 0b1111_1111_1111_1111;

 print!("{}, {}, {}, ..., ", zero, one, two);
 println!("{}, {}, {}", sixty5_533, sixty5_534, sixty5_535);
}

There is another (easy) way to kill a program using a similar technique. In listing 5.5,
we ask Rust to fit 400 into an u8, which can only count up to 255 values. Look in ch5/
ch5-impossible-addition.rs for the source code for this listing.

#[allow(arithmetic_overflow)]

fn main() {
 let (a, b) = (200, 200);
 let c: u8 = a + b;
 println!("200 + 200 = {}", c);
}

The code compiles, but one of two things happen:

 The program panics:

thread 'main' panicked at 'attempt to add with overflow',
 5-impossible-add.rs:3:15
note: Run with `RUST_BACKTRACE=1` for a backtrace

This behavior can be invoked via executing rustc with its default options:
rustc ch5-impossible-add.rs && ch5-impossible-add.

 The program gives you the wrong answer:

200 + 200 = 144

This behavior can be invoked by executing rustc with the -O flag: rustc -O
ch5-impossible-add.rs && ch5-impossible-add.

Listing 5.4 How u16 bit patterns translate to a fixed number of integers

Listing 5.5 Impossible addition

Required declaration. The
Rust compiler can detect this
obvious overflow situation.

Without the type declaration, Rust
won’t assume that you’re trying to
create an impossible situation.

142 CHAPTER 5 Data in depth
There are two small lessons here:

 It’s important to understand the limitations of your types.
 Despite Rust’s strengths, programs written in Rust can still break.

Developing strategies for preventing integer overflow is one of the ways that system
programmers are distinguished from others. Programmers who only have experience
with dynamic languages are extremely unlikely to encounter an integer overflow.
Dynamic languages typically check to see that the results of integer expressions will fit.
When these can’t, the variable that’s receiving the result is promoted to a wider inte-
ger type.

 When developing performance critical code, you get to choose which parameters
to adjust. If you use fixed-sized types, you gain speed, but you need to accept some
risk. To mitigate the risk, you can check to see that overflow won’t occur at runtime.
Imposing those checks will slow you down, however. Another, much more common
option, is to sacrifice space by using a large integer type, such as i64. To go higher
still, you’ll need to move to arbitrarily sized integers, which come with their own costs.

5.2.1 Understanding endianness

CPU vendors argue about how the individual bytes that make up integers should be
laid out. Some CPUs order multibyte sequences left to right and others are right to
left. This characteristic is known as a CPU’s endianness. The is one of the reasons why
copying an executable file from one computer to another might not work.

 Let’s consider a 32-bit integer that represents a number made up of four bytes: AA,
BB, CC, and DD. Listing 5.6 (ch5/ch5-endianness.rs), with the help of our friend
sys::mem::transmute(), demonstrates that byte order matters. When compiled and
executed, the code from listing 5.6 prints one of two things, depending on the endi-
anness of your machine. Most computers that people run for day-to-day work print the
following:1

-573785174 vs. -1430532899

But more exotic hardware swaps the two numbers around like this:

-1430532899 vs. -573785174

use std::mem::transmute;

fn main() {
 let big_endian: [u8; 4] = [0xAA, 0xBB, 0xCC, 0xDD];
 let little_endian: [u8; 4] = [0xDD, 0xCC, 0xBB, 0xAA];

1 In 2021, the x86-64/AMD64 CPU architecture is dominant.

Listing 5.6 Inspecting endianness

143Representing decimal numbers
 let a: i32 = unsafe { transmute(big_endian) };
 let b: i32 = unsafe { transmute(little_endian) };

 println!("{} vs {}", a, b);
}

The terminology comes from the significance of the bytes in the sequence. To take you
back to when you learned addition, we can factor the number 123 into three parts:

Summing all of these parts gets us back to our original number. The first part, 100, is
labeled as the most significant. When written out in the conventional way, 123 as 123,
we are writing in big endian format. Were we to invert that ordering by writing 123 as
321, we would be writing in little endian format.

 Binary numbers work in a similar way. Each number part is a power of 2 (20, 21,
22,…, 2n), rather than a power of 10 (100, 101, 102,…, 10n).

 Before the late-1990s, endianness was a big issue, especially in the server market.
Glossing over the fact that a number of processors can support bidirectional endian-
ness, Sun Microsystems, Cray, Motorola, and SGI went one way. ARM decided to
hedge its bet and developed a bi-endian architecture. Intel went the other way. The
other way won. Integers are almost certainly stored in little endian format.

 In addition to multibyte sequences, there is a related problem within a byte.
Should an u8 that represents 3 look like 0000_0011, or should it look like 1100_0000?
The computer’s preference for layout of individual bits is known as its bit numbering or
bit endianness. It’s unlikely, however, that this internal ordering will affect your day-to-
day programming. To investigate further, look for your platform’s documentation to
find out on which end its most significant bit lies.

NOTE The abbreviation MSB can be deceptive. Different authors use the
same abbreviation to refer to two concepts: most significant bit and most sig-
nificant byte. To avoid confusion, this text uses the term bit numbering to refer
to the most significant bit and endianness to refer to most significant byte.

5.3 Representing decimal numbers
One of the claims made at the start of this chapter was that understanding more about
bit patterns enables you to compress your data. Let’s put that into practice. In this sec-
tion, you will learn how to pull bits out of a floating-point number and inject those
into a single byte format of your own creation.

 Here is some context for the problem at hand. Machine learning practitioners
often need to store and distribute large models. A model for our purposes here is just

100 × 1 100

10 × 2 20

1 × 3 3

std::mem::transmute()
instructs the compiler to
interpret its argument as
the type on the left (i32).

144 CHAPTER 5 Data in depth
a large array of numbers. The numbers within those models often fall within the ranges
0..=1 or -1..=1 (using Rust’s range syntax), depending on the application. Given that
we don’t need the whole range that f32 or f64 supports, why use all of these bytes? Let’s
see how far we can get with 1. Because there is a known limited range, it’s possible to
create a decimal number format that can model that range compactly.

 To start, we’re going to need to learn about how decimal numbers are represented
inside today’s computers. This means learning about the internals of floating-point
numbers.

5.4 Floating-point numbers
Each floating-point number is laid out in memory as scientific notation. If you’re unfa-
miliar with scientific notation, here is a quick primer.

 Scientists describe the mass of Jupiter as 1.898 × 1027 kg and the mass of an ant as
3.801 × 10–4 kg. The key insight is that the same number of characters are used to
describe vastly different scales. Computer scientists have taken advantage of that
insight to create a fixed-width format that encodes a wide range of numbers. Each
position within a number in scientific notation is given a role:

 A sign, which is implied in our two examples, would be present for negative
numbers (negative infinity to 0).

 The mantissa, also known as the significand, can be thought of as being the value
in question (1.898 and 3.801, for example).

 The radix, also known as the base, is the value that is raised to the power of the
exponent (10 in both of our examples).

 The exponent describes the scale of the values (27 and –4).

This crosses over to floating point quite neatly. A floating-point value is a container
with three fields:

 A sign bit
 An exponent
 A mantissa

Where is the radix? The standard defines it as 2 for all floating-point types. This defini-
tion allows the radix to be omitted from the bit pattern itself.

5.4.1 Looking inside an f32

Figure 5.1 presents the memory layout of the f32 type in Rust. The layout is called
binary32 within the IEEE 754-2019 and IEEE 754-2008 standards and single by their
predecessor, IEE 754-1985.

 The value 42.42 is encoded as f32 with the bit pattern
01000010001010011010111000010100. That bit pattern is more compactly repre-
sented as 0x4229AE14. Table 5.1 shows the values of each of the three fields and what
these represent..

145Floating-point numbers
NOTE See lines 32–38 of listing 5.10 and the explanation provided shortly in
section 5.3.5 to learn how 01010011010111000010100 represents 1.325625.

The following equation decodes the fields of a floating-point number into a single
number. Variables from the standard (Radix, Bias) appear in title case. Variables from
the bit pattern (sign_bit, mantissa, exponent) occur as lowercase and monospace.

 n = –1sign_bit × mantissa × Radix(exponent–Bias)

 n = –1sign_bit × mantissa × Radix(exponent – 127)

 n = –1sign_bit × mantissa × Radix(132 – 127)

 n = –1sign_bit × mantissa × 2(132– 127)

 n = –1sign_bit × 1.325625 × 2(132–127)

 n = –10 × 1.325625 × 25

 n = 1 × 1.325625 × 32
 n = 42.42

One quirk of floating-point numbers is that their sign bits allow for both 0 and –0.
That is, floating-point numbers that have different bit patterns compare as equal (0
and –0) and have identical bit patterns (NAN values) that compare as unequal.

Table 5.1 The components of 42.42 represented by the bit pattern 0x4229AE14 as a f32 type

Component name
Component

in binary
Component as
base-10 (u32)

Decoded
value

Sign bit (s) 0 0 1

Exponent (t) 10000100 132 5

Mantissa/significand (m) 01010011010111000010100 2,731,540 1.325625

Base/radix 2

Exponent bias 127

3130

Byte 0 Byte 1 Byte 2 Byte 3

292827262524 2322212019181716 151413121110 9 8 7 6 5 4 3 2 1 0

Mantissa

Bit offsets

Exponent

Byte offsets

Sign bit

Figure 5.1 An overview of the three components encoded within the bits of a floating-point number for
the f32 type in Rust

146 CHAPTER 5 Data in depth
5.4.2 Isolating the sign bit

To isolate the sign bit, shift the other bits out of the way. For f32, this involves a right
shift of 31 places (>> 31). The following listing is a short snippet of code that performs
the right shift.

1 let n: f32 = 42.42;
2 let n_bits: u32 = n.to_bits();
3 let sign_bit = n_bits >> 31;

To provide you with a deeper intuition about what is happening, these steps are
detailed graphically here:

1 Start with a f32 value:

1 let n: f32 = 42.42;

2 Interpret the bits of the f32 as a u32 to allow for bit manipulation:

2 let n_bits: u32 = n.to_bits();

3 Shift the bits within n 31 places to the right:

3 let sign_bit = n_bits >> 31;

5.4.3 Isolating the exponent

To isolate the exponent, two bit manipulations are required. First, perform a right
shift to overwrite the mantissa’s bits (>> 23). Then use an AND mask (& 0xff) to
exclude the sign bit.

 The exponent’s bits also need to go through a decoding step. To decode the expo-
nent, interpret its 8 bits a signed integer, then subtract 127 from the result. (As dis-
cussed in section 5.3.2, 127 is known as the bias.) The following listing shows the code
that describes the steps given in the last two paragraphs.

Listing 5.7 Isolating and decoding the sign bit from an f32

The issue that needs to be resolved is the sign bit’s position. Treated
naïvely, it represents 4,294,967,296 (232) or 0, rather than (21 0) or 0.

The sign bit has now been positioned
in the least significant postion.

147Floating-point numbers
1 let n: f32 = 42.42;
2 let n_bits: u32 = n.to_bits();
3 let exponent_ = n_bits >> 23;
4 let exponent_ = exponent_ & 0xff;
5 let exponent = (exponent_ as i32) - 127;

And to further explain the process, these steps are repeated graphically as follows:

1 Start with an f32 number:

1 let n: f32 = 42.42;

2 Interpret the bits of that f32 as u32 to allow for bit manipulation:

2 let n_bits: u32 = n.to_bits();

3 Shift the exponent’s 8 bits to the right, overwriting the mantissa:

3 let exponent_ = n_bits >> 23;

4 Filter the sign bit away with an AND mask. Only the 8 rightmost bits can pass
through the mask:

4 let exponent_ = exponent_ & 0xff;

5 Interpret the remaining bits as a signed integer and subtract the bias as defined
by the standard:

5 let exponent = (exponent_ as i32) - 127;

Listing 5.8 Isolating and decoding the exponent from an f32

Problem: exponent bits are not aligned to the right.

Problem: The sign bit remains at bit 8.

The sign bit has now been removed.

148 CHAPTER 5 Data in depth
5.4.4 Isolate the mantissa

To isolate the mantissa’s 23 bits, you can use an AND mask to remove the sign bit and
the exponent (& 0x7fffff). However, it’s actually not necessary to do so because the
following decoding steps can simply ignore bits as irrelevant. Unfortunately, the man-
tissa’s decoding step is significantly more complex than the exponent’s.

 To decode the mantissa’s bits, multiply each bit by its weight and sum the result.
The first bit’s weight is 0.5, and each subsequent bit’s weight is half of the current
weight; for example, 0.5 (2–1), 0.25 (2–2),…, 0.00000011920928955078125 (2–23). An
implicit 24th bit that represents 1.0 (2–0) is always considered to be on, except when
special cases are triggered. Special cases are triggered by the state of the exponent:

 When the exponent’s bits are all 0s, then the treatment of mantissa’s bits changes to repre-
sent subnormal numbers (also known as “denormal numbers”). In practical terms, this
change increases the number of decimal numbers near zero that can be repre-
sented. Formally, a subnormal number is one between 0 and the smallest num-
ber that the normal behavior would otherwise be able to represent.

 When the exponent’s bits are all 1s, then the decimal number is infinity (), negative
infinity (–), or Not a Number (NAN). NAN values indicate special cases where the
numeric result is mathematically undefined (such as 0 ÷ 0) or that are other-
wise invalid.

Operations involving NAN values are often counterintuitive. For example,
testing whether two values are equal is always false, even when the two bit pat-
terns are exactly the same. An interesting curiosity is that f32 has approximately
4.2 million (~222) bit patterns that represent NAN.

The following listing provides the code that implements nonspecial cases.

 1 let n: f32 = 42.42;
 2 let n_bits: u32 = n.to_bits();
 3 let mut mantissa: f32 = 1.0;
 4
 5 for i in 0..23 {
 6 let mask = 1 << i;
 7 let one_at_bit_i = n_bits & mask;
 8 if one_at_bit_i != 0 {
 9 let i_ = i as f32;
10 let weight = 2_f32.powf(i_ - 23.0);
11 mantissa += weight;
12 }
13 }

Repeating that process slowly:

1 Start with an f32 value:

 1 let n: f32 = 42.42;

Listing 5.9 Isolating and decoding the mantissa from an f32

149Floating-point numbers
2 Cast f32 as u32 to allow for bit manipulation:

 2 let n_bits: u32 = n.to_bits();

3 Create a mutable f32 value initialized to 1.0 (2–0). This represents the weight of
the implicit 24th bit:

 3 let mut mantissa: f32 = 1.0;

4 Iterate through the fractional bits of the mantissa, adding those bit’s defined
values to the mantissa variable:

 5 for i in 0..23 {
 6 let mask = 1 << i;
 7 let one_at_bit_i = n_bits & mask;
 8 if one_at_bit_i != 0 {
 9 let i_ = i as f32;
10 let weight = 2_f32.powf(i_ - 23.0);
11 mantissa += weight;
12 }
13 }

a Iterate from 0 to 23 with a temporary variable i assigned to the iteration
number:

 5 for i in 0..23 {

b Create a bit mask with the iteration number as the bit allowed to pass through
and assign the result to mask. For example, when i equals 5, the bit mask is
0b00000000_00000000_00000000_00100000:

 6 let mask = 1 << i;

c Use mask as a filter against the bits from the original number stored as
n_bits. When the original number’s bit at position i is non-zero, one_at_
bit_i will be assigned to a non-zero value:

 7 let one_at_bit_i = n_bits & mask;

d If one_at_bit_i is non-zero, then proceed:

 8 if one_at_bit_i != 0 {

e Calculate the weight of the bit at position i, which is 2i–23:

 9 let i_ = i as f32;
10 let weight = 2_f32.powf(i_ - 23.0);

f Add the weight to mantissa in place:

11 mantissa += weight;

150 CHAPTER 5 Data in depth
5.4.5 Dissecting a floating-point number

As mentioned at the start of section 5.4, floating-point numbers are a container for-
mat with three fields. Sections 5.4.1–5.4.3 have given us the tools that we need to
extract each of these fields. Let’s put those to work.

 Listing 5.10 does a round trip. It extracts the fields from the number 42.42
encoded as an f32 into individual parts, then assembles these again to create another
number. To convert the bits within a floating-point number to a number, there are
three tasks:

1 Extract the bits of those values from the container (to_parts() on lines 1–26)
2 Decode each value from its raw bit pattern to its actual value (decode() on lines

28–47)
3 Perform the arithmetic to convert from scientific notation to an ordinary num-

ber (from_parts() on lines 49–55)

When we run listing 5.10, it provides two views of the internals of the number 42.42
encoded as an f32:

42.42 -> 42.42
field | as bits | as real number
sign | 0 | 1
exponent | 10000100 | 32
mantissa | 01010011010111000010100 | 1.325625

In listing 5.10, deconstruct_f32() extracts each field of a floating-point value with bit
manipulation techniques. decode_f32_parts() demonstrates how to convert those
fields to the relevant number. The f32_from_parts() method combines these to create
a single decimal number. The source for this file is located in ch5/ch5-visualizing-f32.rs.

Parsing Rust’s floating-point literals is harder than it looks
Rust’s numbers have methods. To return the nearest integer to 1.2, Rust uses the
method 1.2_f32.ceil() rather than the function call ceil(1.2). While often con-
venient, this can cause some issues when the compiler parses your source code.

For example, unary minus has lower precedence than method calls, which means
unexpected mathematical errors can occur. It is often helpful to use parentheses to
make your intent clear to the compiler. To calculate –10, wrap 1.0 in parentheses

(-1.0_f32).powf(0.0)

rather than

-1.0_f32.powf(0.0)

which is interpreted as –(10). Because both –10 and –(10) are mathematically valid,
Rust will not complain when parentheses are omitted.

151Floating-point numbers

Dec
m

desc
sect
 1 const BIAS: i32 = 127;
 2 const RADIX: f32 = 2.0;
 3
 4 fn main() {
 5 let n: f32 = 42.42;
 6
 7 let (sign, exp, frac) = to_parts(n);
 8 let (sign_, exp_, mant) = decode(sign, exp, frac);
 9 let n_ = from_parts(sign_, exp_, mant);
10
11 println!("{} -> {}", n, n_);
12 println!("field | as bits | as real number");
13 println!("sign | {:01b} | {}", sign, sign_);
14 println!("exponent | {:08b} | {}", exp, exp_);
15 println!("mantissa | {:023b} | {}", frac, mant);
16 }
17
18 fn to_parts(n: f32) -> (u32, u32, u32) {
19 let bits = n.to_bits();
20
21 let sign = (bits >> 31) & 1;
22 let exponent = (bits >> 23) & 0xff;
23 let fraction = bits & 0x7fffff ;
24
25 (sign, exponent, fraction)
26 }
27
28 fn decode(
29 sign: u32,
30 exponent: u32,
31 fraction: u32
32) -> (f32, f32, f32) {
33 let signed_1 = (-1.0_f32).powf(sign as f32);
34
35 let exponent = (exponent as i32) - BIAS;
36 let exponent = RADIX.powf(exponent as f32);
37
38 for i in 0..23 {
39 let mask = 1 << i;
40 let one_at_bit_i = fraction & mask;
41 if one_at_bit_i != 0 {
42 let i_ = i as f32;
43 let weight = 2_f32.powf(i_ - 23.0);
44 mantissa += weight;
45 }
46 }
47
48 (signed_1, exponent, mantissa)
49 }
50
51 fn from_parts(
52 sign: f32,
53 exponent: f32,

Listing 5.10 Deconstructing a floating-point value

Similar constants are accessible
via the std::f32 module.

main() lives happily at
the beginning of a file.

Strips 31 unwanted bits
away by shifting these
nowhere, leaving only
the sign bit

Filters out the top bit with a
logical AND mask, then strips
23 unwanted bits away

Retains only the 23 least
significant bits via an AND maskThe mantissa part

is called a fraction
here as it becomes
the mantissa once

it’s decoded.
Converts the sign bit to 1.0 or
–1.0 (–1sign). Parentheses are
required around –1.0_f32 to
clarify operator precedence as
method calls rank higher than
a unary minus.

exponent must become an
i32 in case subtracting the
BIAS results in a negative
number; then it needs to be
cast as a f32 so that it can
be used for exponentiation.

odes the
antissa

using
the logic
ribed in

ion 5.4.4

Cheats a bit by using f32 values
in intermediate steps. Hopefully,
it is a forgivable offense.

152 CHAPTER 5 Data in depth
54 mantissa: f32,
55) -> f32 {
56 sign * exponent * mantissa
57 }

Understanding how to unpack bits from bytes means that you’ll be in a much stronger
position when you’re faced with interpreting untyped bytes flying in from the network
throughout your career.

5.5 Fixed-point number formats
In addition to representing decimal numbers with floating-point formats, fixed point
is also available. These can be useful for representing fractions and are an option for
performing calculations on CPUs without a floating point unit (FPU), such as micro-
controllers. Unlike floating-point numbers, the decimal place does not move to dynami-
cally accommodate different ranges. In our case, we’ll be using a fixed-point number
format to compactly represent values between –1..=1. Although it loses accuracy, it
saves significant space.2

 The Q format is a fixed-point number format that uses a single byte.3 It was cre-
ated by Texas Instruments for embedded computing devices. The specific version of
the Q format that we will implement is called Q7. This indicates that there are 7 bits
available for the represented number plus 1 sign bit. We’ll disguise the decimal
nature of the type by hiding the 7 bits within an i8. That means that the Rust com-
piler will be able to assist us in keeping track of the value’s sign. We will also be able
to derive traits such as PartialEq and Eq, which provide comparison operators for
our type, for free.

 The following listing, an extract from listing 5.14, provides the type’s definition.
You’ll find the source in ch5/ch5-q/src/lib.rs.

 1 #[derive(Debug,Clone,Copy,PartialEq,Eq)]
 2 pub struct Q7(i8);

A struct created from unnamed fields (for example, Q7(i8)), is known as a tuple struct.
It offers a concise notation when the fields are not intended to be accessed directly.
While not shown in listing 5.11, tuple structs can include multiple fields by adding fur-
ther types separated by commas. As a reminder, the #[derive(…)] block asks Rust to
implement several traits on our behalf:

2 This practice is known as quantizing the model in the machine learning community.
3 Q, often written as ℚ (this style is called blackboard bold), is the mathematical symbol for the so-called rational

numbers. Rational numbers are numbers that can be represented as a fraction of two integers, such as 1/3.

Listing 5.11 Definition of the Q7 format

Q7 is a tuple struct.

153Fixed-point number formats
 Debug—Used by the println!() macro (and others); allows Q7 to be converted
to a string by the {:?} syntax.

 Clone—Enables Q7 to be duplicated with a .clone() method. This can be
derived because i8 implements the Clone trait.

 Copy—Enables cheap and implicit duplications where ownership errors might
otherwise occur. Formally, this changes Q7 from a type that uses move semantics
to one that uses copy semantics.

 PartialEq—Enables Q7 values to be compared with the equality operator (==).
 Eq—Indicates to Rust that all possible Q7 values can be compared against any

other possible Q7 value.

Q7 is intended as a compact storage and data transfer type only. Its most important
role is to convert to and from floating-point types. The following listing, an extract
from listing 5.14, shows the conversion to f64. The source for this listing is in ch5/
ch5-q/src/lib.rs.

 4 impl From<f64> for Q7 {
 5 fn from (n: f64) -> Self {
 6 // assert!(n >= -1.0);
 7 // assert!(n <= 1.0);
 8 if n >= 1.0 {
 9 Q7(127)
10 } else if n <= -1.0 {
11 Q7(-128)
12 } else {
13 Q7((n * 128.0) as i8)
14 }
15 }
16 }
17
18 impl From<Q7> for f64 {
19 fn from(n: Q7) -> f64 {
20 (n.0 as f64) * 2_f64.powf(-7.0)
21 }
22 }

The two impl From<T> for U blocks in listing 5.12 explain to Rust how to convert from
type T to type U. In the listing

 Lines 4 and 18 introduce the impl From<T> for U blocks. The std::convert
::From trait is included in local scope as From, which is part of the standard
prelude. It requires type U to implement from() that takes a T value as its sole
argument.

Listing 5.12 Converting from f64 to Q7

Coerces any out-of-
bounds input to fit

Equivalent to the
iteration approach
taken in section 5.3.5.

154 CHAPTER 5 Data in depth
 Lines 6–7 present an option for handling unexpected input data: crashes. It is
not used here, but is available to you in your own projects.

 Lines 13–16 truncate out-of-bounds input. For our purposes, we know that out-
of-bounds input will not occur and so accept the risk of losing information.

TIP Conversions using the From trait should be mathematically equivalent.
For type conversions that can fail, consider implementing the std::convert
::TryFrom trait instead.

We can also quickly implement converting from f32 to Q7 using the From<f64> imple-
mentation that we’ve just seen. The following listing, an extract from listing 5.14,
shows this conversion. Its source is in ch5/ch5-q/src/lib.rs.

22 impl From<f32> for Q7 {
23 fn from (n: f32) -> Self {
24 Q7::from(n as f64)
25 }
26 }
27
28 impl From<Q7> for f32 {
29 fn from(n: Q7) -> f32 {
30 f64::from(n) as f32
31 }
32 }

Now, we’ve covered both floating-point types. But how do we know that the code that
we’ve written actually does what we intend? And how do we test what we’ve written? As
it happens, Rust has excellent support for unit testing via cargo.

 The Q7 code that you’ve seen is available as a complete listing. But first, to test the
code, enter the root directory of the crate and run cargo test. The following shows
the output from listing 5.14 (the complete listing):

$ cargo test
 Compiling ch5-q v0.1.0 (file:///path/to/ch5/ch5-q)
 Finished dev [unoptimized + debuginfo] target(s) in 2.86 s
 Running target\debug\deps\ch5_q-013c963f84b21f92

running 3 tests
test tests::f32_to_q7 ... ok
test tests::out_of_bounds ... ok
test tests::q7_to_f32 ... ok

Listing 5.13 Converting from f32 to Q7 via f64

By design, it’s safe to convert from f32 to f64.
A number that can be represented in 32 bits,
it can also be represented in 64 bits.

Generally, converting an f64 into a f32 risks a
loss of precision. In this application, that risk
doesn’t apply as we only have numbers
between –1 and 1 to convert from.

155Fixed-point number formats
test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

 Doc-tests ch5-q

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

The following listing implements the Q7 format and its conversion to and from f32
and f64 types. You’ll find the source for this listing in ch5/ch5-q/src/lib.rs.

 1 #[derive(Debug,Clone,Copy,PartialEq,Eq)]
 2 pub struct Q7(i8);
 3
 4 impl From<f64> for Q7 {
 5 fn from (n: f64) -> Self {
 6 if n >= 1.0 {
 7 Q7(127)
 8 } else if n <= -1.0 {
 9 Q7(-128)
10 } else {
11 Q7((n * 128.0) as i8)
12 }
13 }
14 }
15
16 impl From<Q7> for f64 {
17 fn from(n: Q7) -> f64 {
18 (n.0 as f64) * 2f64.powf(-7.0)
19 }
20 }
21
22 impl From<f32> for Q7 {
23 fn from (n: f32) -> Self {
24 Q7::from(n as f64)
25 }
26 }
27
28 impl From<Q7> for f32 {
29 fn from(n: Q7) -> f32 {
30 f64::from(n) as f32
31 }
32 }
33

Listing 5.14 Full code implementation of the Q7 format

156 CHAPTER 5 Data in depth
34 #[cfg(test)]
35 mod tests {
36 use super::*;
37 #[test]
38 fn out_of_bounds() {
39 assert_eq!(Q7::from(10.), Q7::from(1.));
40 assert_eq!(Q7::from(-10.), Q7::from(-1.));
41 }
42
43 #[test]
44 fn f32_to_q7() {
45 let n1: f32 = 0.7;
46 let q1 = Q7::from(n1);
47
48 let n2 = -0.4;
49* let q2 = Q7::from(n2);
50
51 let n3 = 123.0;
52 let q3 = Q7::from(n3);
53
54 assert_eq!(q1, Q7(89));
55 assert_eq!(q2, Q7(-51));
56 assert_eq!(q3, Q7(127));
57 }
58
59 #[test]
60 fn q7_to_f32() {
61 let q1 = Q7::from(0.7);
62 let n1 = f32::from(q1);
63 assert_eq!(n1, 0.6953125);
64
65 let q2 = Q7::from(n1);
66 let n2 = f32::from(q2);
67 assert_eq!(n1, n2);
68 }
69 }

A brief look at Rust’s module system
Rust includes a powerful and ergonomic module system. To keep the examples sim-
ple, however, this book does not make heavy use of its system. But here are some
basic guidelines:

 Modules are combined into crates.
 Modules can be defined by a project’s directory structure. Subdirectories

under src/ become a module when that directory contains a mod.rs file.
 Modules can also be defined within a file with the mod keyword.
 Modules can be nested arbitrarily.
 All members of a module including its submodules are private by default. Pri-

vate items can be accessed within the module and any of the module’s
descendants.

Defines a submodule within this file

Brings the parent module within the submodule’s local
scope. Items that are marked as pub are accessible here.

157Generating random probabilities from random bytes
5.6 Generating random probabilities from random bytes
Here is an interesting exercise to test the knowledge that you have developed over the
preceding pages. Imagine that you have a source of random bytes (u8), and you want
to convert one of those into a floating-point (f32) value between 0 and 1. Naively
interpreting the incoming bytes as f32/f64 via mem::transmute results in massive vari-
ations in scale. The following listing demonstrates the division operation that gener-
ates an f32 value that lies between 0 and 1 from an arbitrary input byte.

fn mock_rand(n: u8) -> f32 {
 (n as f32) / 255.0
}

As division is a slow operation, perhaps there is something faster than simply dividing
by the largest value that a byte can represent. Perhaps it’s possible to assume a con-
stant exponent value, then shift the incoming bits into the mantissa, such that these
would form a range between 0 and 1. Listing 5.16 with bit manipulation is the best
result that I could achieve.

 With an exponent of –1 represented as 0b01111110 (126 in base 10), the source
byte achieves a range of 0.5 to 0.998. That can be normalized to 0.0 to 0.996 with sub-
traction and multiplication. But is there a better way to do this?

 1 fn mock_rand(n: u8) -> f32 {
 2
 3 let base: u32 = 0b0_01111110_00000000000000000000000;
 4
 5 let large_n = (n as u32) << 15;
 6
 7 let f32_bits = base | large_n;
 8
 9 let m = f32::from_bits(f32_bits);
10
11 2.0 * (m - 0.5)
12 }

 Prefix things that you want to make public with the pub keyword. The pub key-
word has some specialized cases:
a pub(crate) exposes an item to other modules within the crate.
b pub(super) exposes an item to the parent module.
c pub(in path) exposes an item to a module within path.
d pub(self) explicitly keeps the item private.

 Bring items from other modules into local scope with the use keyword.

Listing 5.15 Generating f32 values in interval [0,1] from a u8 with division

Listing 5.16 Generating f32 values in interval [0,1] from a u8

255 is the maximum value
that u8 can represent.

Aligns the input byte n to 32 bits,
then increases its value by shifting
its bits 15 places to the left

Takes a bitwise OR, merging
the base with the input byte

Interprets f32_bits (which
is type u32) as an f32Normalizes the

output range

158 CHAPTER 5 Data in depth
As a complete program, you can incorporate mock_rand() from listing 5.16 into a test
program fairly easily. Listing 5.17 (ch5/ch5-u8-to-mock-rand.rs) generates an f32
value that lies between 0 and 1 from an arbitrary input byte without division. Here’s its
output:

max of input range: 11111111 -> 0.99609375
mid of input range: 01111111 -> 0.49609375
min of input range: 00000000 -> 0

 1 fn mock_rand(n: u8) -> f32 {
 2 let base: u32 = 0b0_01111110_00000000000000000000000;
 3 let large_n = (n as u32) << 15;
 4 let f32_bits = base | large_n;
 5 let m = f32::from_bits(f32_bits);
 6 2.0 * (m - 0.5)
 7 }
 8
 9 fn main() {
10 println!("max of input range: {:08b} -> {:?}", 0xff, mock_rand(0xff));
11 println!("mid of input range: {:08b} -> {:?}", 0x7f, mock_rand(0x7f));
12 println!("min of input range: {:08b} -> {:?}", 0x00, mock_rand(0x00));
13 }

5.7 Implementing a CPU to establish that functions
are also data
One of the fairly mundane, yet utterly intriguing details about computing is that
instructions are also just numbers. Operations and the data that is being operated on
share the same encoding. This means that, as a general computing device, your com-
puter can emulate other computers’ instruction sets by emulating those in software.
While we cannot pull apart a CPU to see how it works, we can construct one with code.

 After working through this section, you will learn how a computer operates at a
fundamental level. This section shows how functions operate and what the term
pointer means. We won’t have an assembly language; we’ll actually be programming
directly in hex. This section also introduces you to another term you may have heard
of in passing: the stack.

 We’ll implement a subset of a system called CHIP-8, which was available to consum-
ers in the 1970s. CHIP-8 was supported by a number of manufacturers, but it was fairly
primitive even by the standards of that time. (It was created to write games rather than
for commercial or scientific applications.)

 One device that used the CHIP-8 CPU was the COSMAC VIP. It had a single-color
display with a resolution of 64x32 (0.0002 megapixels), 2 KB RAM, 1.76 MHz CPU,
and sold for $275 USD. Oh, and you needed to assemble the computer yourself. It
also contained games programmed by the world’s first female game developer, Joyce
Weisbecker.

Listing 5.17 Generating an f32 value without division

159Implementing a CPU to establish that functions are also data
5.7.1 CPU RIA/1: The Adder

We’ll build our understanding by starting with a minimal core. Let’s first construct an
emulator that only supports a single instruction: addition. To understand what’s hap-
pening within listing 5.22 later in this section, there are three main things to learn:

 Becoming familiar with new terminology
 How to interpret opcodes
 Understanding the main loop

TERMS RELATED TO CPU EMULATION

Dealing with CPUs and emulation involves learning some terms. Take a moment to
look at and understand the following:

 An operation (often shortened to “op”) refers to procedures that are supported natively by
the system. You might also encounter equivalent phrases such as implemented in
hardware or intrinsic operation as you explore further.

 Registers are containers for data that the CPU accesses directly. For most operations,
operands must be moved to registers for an operation to function. For the
CHIP-8, each register is a u8 value.

 An opcode is a number that maps to an operation. On the CHIP-8 platform, opcodes
include both the operation and the operands’ registers.

DEFINING THE CPU
The first operation that we want to support is addition. The operation takes two regis-
ters (x and y) as operands and adds the value stored in y to x. To implement this, we’ll
use the minimal amount of code possible, as the following listing shows. Our initial
CPU contains only two registers and the space for a single opcode.

struct CPU {

 current_operation: u16,
 registers: [u8; 2],

}

So far, the CPU is inert. To perform addition, we’ll need to take the following steps,
but there is no ability to store data in memory as yet:

1 Initialize a CPU.
2 Load u8 values into registers.
3 Load the addition opcode into current_operation.
4 Perform the operation.

LOADING VALUES INTO REGISTERS

The process for booting up the CPU consists of writing to the fields of the CPU struct.
The following listing, an extract from listing 5.22, shows the CPU initialization process.

Listing 5.18 Definition of the CPU used in listing 5.22

All CHIP-8 opcodes
are u16 values.

These two registers are
sufficient for addition.

160 CHAPTER 5 Data in depth

32 fn main() {
33 let mut cpu = CPU {
34 current_operation: 0,
35 registers: [0; 2],
36 };
37
38 cpu.current_operation = 0x8014;
39 cpu.registers[0] = 5;
40 cpu.registers[1] = 10;

Line 38 from listing 5.19 is difficult to interpret without context. The constant 0x8014
is the opcode that the CPU will interpret. To decode it, split it into four parts:

 8 signifies that the operation involves two registers.
 0 maps to cpu.registers[0].
 1 maps to cpu.registers[1].
 4 indicates addition.

UNDERSTANDING THE EMULATOR’S MAIN LOOP

Now that we’ve loaded the data, the CPU is almost able to do some work. The run()
method performs the bulk of our emulator’s work. Using the following steps, it emu-
lates CPU cycles:

1 Reads the opcode (eventually, from memory)
2 Decodes instruction
3 Matches decoded instruction to known opcodes
4 Dispatches execution of the operation to a specific function

The following listing, an extract from listing 5.22, shows the first functionality being
added to the emulator.

 6 impl CPU {
 7 fn read_opcode(&self) -> u16 {
 8 self.current_operation
 9 }
10
11 fn run(&mut self) {
12 // loop {
13 let opcode = self.read_opcode();
14
15 let c = ((opcode & 0xF000) >> 12) as u8;
16 let x = ((opcode & 0x0F00) >> 8) as u8;
17 let y = ((opcode & 0x00F0) >> 4) as u8;
18 let d = ((opcode & 0x000F) >> 0) as u8;
19
20 match (c, x, y, d) {
21 (0x8, _, _, 0x4) => self.add_xy(x, y),

Listing 5.19 Initializing the CPU

Listing 5.20 Reading the opcode

Initializes with a
no-op (do nothing)

Registers can only
hold u8 values.

read_opcode() becomes more
complex when we introduce
reading from memory.

Avoids running this
code in a loop for now

The opcode decoding
process is explained fully
in the next section.

Dispatches execution to the
hardware circuit responsible
for performing it

161Implementing a CPU to establish that functions are also data
22 _ => todo!("opcode {:04x}", opcode),
23 }
24 // }
25 }
26
27 fn add_xy(&mut self, x: u8, y: u8) {
28 self.registers[x as usize] += self.registers[y as usize];
29 }
30 }

HOW TO INTERPRET CHIP-8 OPCODES

It is important for our CPU to be able to interpret its opcode (0x8014). This section
provides a thorough explanation of the process used in the CHIP-8 and its naming
conventions.

 CHIP-8 opcodes are u16 values made up of 4 nibbles. A nibble is half of a byte. That
is, a nibble is a 4-bit value. Because there isn’t a 4-bit type in Rust, splitting the u16 val-
ues into those parts is fiddly. To make matters more complicated, CHIP-8 nibbles are
often recombined to form either 8-bit or 12-bit values depending on context.

 To simplify talking about the parts of each opcode, let’s introduce some standard
terminology. Each opcode is made up of two bytes: the high byte and the low byte. And
each byte is made up of two nibbles, the high nibble and the low nibble, respectively. Fig-
ure 5.2 illustrates each term.

Documentation manuals for the CHIP-8 introduce several variables, including kk,
nnn, x, and y. Table 5.2 explains their role, location, and width.

Table 5.2 Variables used within CHIP-8 opcode descriptions

Variable Bit length Location Description

n* 4 low byte, low nibble Number of bytes

x 4 high byte, low nibble CPU register

y 4 low byte, high nibble CPU register

c† 4 high byte, high nibble Opcode group

d†*‡ 4 low byte, low nibble Opcode subgroup

kk‡ 8 low byte, both nibbles Integer

A full emulator
contains several
dozen operations. Avoids running this

code in a loop for now

0 x 7 3 E E0 x 7 3 E E0 x 7 3 E E0 x 7 3 E E0 x 7 3 E E

Low byte ()u8High byte ()u8

High nibble ()u4

Low nibble ()u4

Low nibble ()u4

High nibble ()u4 Figure 5.2 Terms used to refer
to parts of CHIP-8 opcodes

162 CHAPTER 5 Data in depth
There are three main forms of opcodes, as illustrated in figure 5.3. The decoding pro-
cess involves matching on the high nibble of the first byte and then applying one of
three strategies.

To extract nibbles from bytes, we’ll need to use the right shift (>>) and logical AND
(&) bitwise operations. These operations were introduced in section 5.4, especially in
sections 5.4.1–5.4.3. The following listing demonstrates applying these bitwise opera-
tions to the current problem.

fn main() {
 let opcode: u16 = 0x71E4;

 let c = (opcode & 0xF000) >> 12;
 let x = (opcode & 0x0F00) >> 8;
 let y = (opcode & 0x00F0) >> 4;
 let d = (opcode & 0x000F) >> 0;

nnn‡ 12 high byte, low nibble and low byte, both nibbles Memory address

* n and d occupy the same location but are used in mutually exclusive contexts.
† The variable names c and d are used within this book but not in other CHIP-8 documentation.
‡ Used in CPU RIA/3 (listing 5.29).

Listing 5.21 Extracting variables from an opcode

Table 5.2 Variables used within CHIP-8 opcode descriptions (continued)

Variable Bit length Location Description

Interpretation:

add 238 (0xEE)

to register 3

Interpretation:

jump to memory

address (0x200)

Interpretation:

perform a bitwise OR

operation with registers

x yand . Store result

in register .x

0 x 7 3 E E

Opcode

group ()c

Register ()x

Argument ()kk

0 x 1 2 0 0

Opcode

group ()c

Address ()nnn

0 x 8 2 3 1

Opcode

group (c)

Opcode

subtype ()d

Register ()y
Register ()x

Figure 5.3 CHIP-8 opcodes are decoded
in multiple ways. Which to use depends on
the value of the leftmost nibble.

Select single nibbles with the AND operator (&)
to filter bits that should be retained, then shift
to move the bits to the lowest significant place.
Hexadecimal notation is convenient for these
operations as each hexadecimal digit represents
4 bits. A 0xF value selects all bits from a nibble.

163Implementing a CPU to establish that functions are also data
 assert_eq!(c, 0x7);
 assert_eq!(x, 0x1);
 assert_eq!(y, 0xE);
 assert_eq!(d, 0x4);

 let nnn = opcode & 0x0FFF;
 let kk = opcode & 0x00FF;

 assert_eq!(nnn, 0x1E4);
 assert_eq!(kk, 0xE4);
}

We’re now able to decode the instructions. The next step is actually executing these.

5.7.2 Full code listing for CPU RIA/1: The Adder

The following listing is the full code for our proto-emulator, the Adder. You’ll find its
source in ch5/ch5-cpu1/src/main.rs.

 1 struct CPU {
 2 current_operation: u16,
 3 registers: [u8; 2],
 4 }
 5
 6 impl CPU {
 7 fn read_opcode(&self) -> u16 {
 8 self.current_operation
 9 }
10
11 fn run(&mut self) {
12 // loop {
13 let opcode = self.read_opcode();
14
15 let c = ((opcode & 0xF000) >> 12) as u8;
16 let x = ((opcode & 0x0F00) >> 8) as u8;
17 let y = ((opcode & 0x00F0) >> 4) as u8;
18 let d = ((opcode & 0x000F) >> 0) as u8;
19
20 match (c, x, y, d) {
21 (0x8, _, _, 0x4) => self.add_xy(x, y),
22 _ => todo!("opcode {:04x}", opcode),
23 }
24 // }
25 }
26
27 fn add_xy(&mut self, x: u8, y: u8) {
28 self.registers[x as usize] += self.registers[y as usize];
29 }
30 }
31
32 fn main() {
33 let mut cpu = CPU {

Listing 5.22 Implementing the beginnings of CHIP-8 emulator

The four nibbles from opcode are
available as individual variables
after processing.

Select multiple nibbles by
increasing the width of the
filter. For our purposes,
shifting bits rightward is
unnecessary.

164 CHAPTER 5 Data in depth
34 current_operation: 0,
35 registers: [0; 2],
36 };
37
38 cpu.current_operation = 0x8014;
39 cpu.registers[0] = 5;
40 cpu.registers[1] = 10;
41
42 cpu.run();
43
44 assert_eq!(cpu.registers[0], 15);
45
46 println!("5 + 10 = {}", cpu.registers[0]);
47 }

The Adder doesn’t do much. When executed, it prints the following line:

5 + 10 = 15

5.7.3 CPU RIA/2: The Multiplier

CPU RIA/1 can execute a single instruction: addition. CPU RIA/2, the Multiplier, can
execute several instructions in sequence. The Multiplier includes RAM, a working
main loop, and a variable that indicates which instruction to execute next that we’ll
call position_in_memory. Listing 5.26 makes the following substantive changes to list-
ing 5.22:

 Adds 4 KB of memory (line 8).
 Includes a fully-fledged main loop and stopping condition (lines 14–31).

At each step in the loop, memory at position_in_memory is accessed and
decoded into an opcode. position_in_memory is then incremented to the next
memory address, and the opcode is executed. The CPU continues to run for-
ever until the stopping condition (an opcode of 0x0000) is encountered.

 Removes the current_instruction field of the CPU struct, which is replaced by
a section of the main loop that decodes bytes from memory (lines 15–17).

 Writes the opcodes into memory (lines 51–53).

EXPANDING THE CPU TO SUPPORT MEMORY

We need to implement some modifications to make our CPU more useful. To start,
the computer needs memory.

 Listing 5.23, an extract from listing 5.26, provides CPU RIA/2’s definition. CPU
RIA/2 contains general-purpose registers for calculations (registers) and one special-
purpose register (position_in_memory). For convenience, we’ll also include the sys-
tem’s memory within the CPU struct itself as the memory field.

1 struct CPU {
2 registers: [u8; 16],

Listing 5.23 Defining a CPU struct

165Implementing a CPU to establish that functions are also data
3 position_in_memory: usize,
4 memory: [u8; 0x1000],
5 }

Some features of the CPU are quite novel:

 Having 16 registers means that a single hexadecimal number (0 to F) can address those.
That allows all opcodes to be compactly represented as u16 values.

 The CHIP-8 only has 4096 bytes of RAM (0x1000 in hexadecimal). This allows CHIP-8’s
equivalent of a usize type to only be 12 bits wide: 212 = 4,096. Those 12 bits
become the nnn variable discussed earlier.

Rust in Action deviates from standard practice in two ways:

 What we call the “position in memory” is normally referred to as the “program counter.”
As a beginner, it can be difficult to remember what the program counter’s role
is. So instead, this book uses a name that reflects its usage.

 Within the CHIP-8 specification, the first 512 bytes (0x100) are reserved for the system,
while other bytes are available for programs. This implementation relaxes that
restriction.

READING OPCODES FROM MEMORY

With the addition of memory within the CPU, the read_opcode() method requires
updating. The following listing, an extract from listing 5.26, does that for us. It reads
an opcode from memory by combining two u8 values into a single u16 value.

 8 fn read_opcode(&self) -> u16 {
 9 let p = self.position_in_memory;
10 let op_byte1 = self.memory[p] as u16;
11 let op_byte2 = self.memory[p + 1] as u16;
12
13 op_byte1 << 8 | op_byte2
14 }

HANDLING INTEGER OVERFLOW

Within the CHIP-8, we use the last register as a carry flag. When set, this flag indicates
that an operation has overflowed the u8 register size. The following listing, an extract
from listing 5.26, shows how to handle this overflow.

34 fn add_xy(&mut self, x: u8, y: u8) {
35 let arg1 = self.registers[x as usize];
36 let arg2 = self.registers[y as usize];
37
38 let (val, overflow) = arg1.overflowing_add(arg2);
39 self.registers[x as usize] = val;
40

Listing 5.24 Reading an opcode from memory

Listing 5.25 Handling overflow in CHIP-8 operations

Using usize rather that u16 diverges from
the original spec, but we’ll use usize as
Rust allows these to be used for indexing.

To create a u16 opcode, we combine two values
from memory with the logical OR operation. These
need to be cast as u16 to start with; otherwise,
the left shift sets all of the bits to 0.

The overflowing_add()
method for u8 returns
(u8, bool). The bool is
true when overflow is
detected.

166 CHAPTER 5 Data in depth
41 if overflow {
42 self.registers[0xF] = 1;
43 } else {
44 self.registers[0xF] = 0;
45 }
46 }

FULL CODE LISTING FOR CPU RIA/2: THE MULTIPLIER

The following listing shows the complete code for our second working emulator, the
Multiplier. You’ll find the source for this listing in ch5/ch5-cpu2/src/main.rs.

 1 struct CPU {
 2 registers: [u8; 16],
 3 position_in_memory: usize,
 4 memory: [u8; 0x1000],
 5 }
 6
 7 impl CPU {
 8 fn read_opcode(&self) -> u16 {
 9 let p = self.position_in_memory;
10 let op_byte1 = self.memory[p] as u16;
11 let op_byte2 = self.memory[p + 1] as u16;
12
13 op_byte1 << 8 | op_byte2
14 }
15
16 fn run(&mut self) {
17 loop {
18 let opcode = self.read_opcode();
19 self.position_in_memory += 2;
20
21 let c = ((opcode & 0xF000) >> 12) as u8;
22 let x = ((opcode & 0x0F00) >> 8) as u8;
23 let y = ((opcode & 0x00F0) >> 4) as u8;
24 let d = ((opcode & 0x000F) >> 0) as u8;
25
26 match (c, x, y, d) {
27 (0, 0, 0, 0) => { return; },
28 (0x8, _, _, 0x4) => self.add_xy(x, y),
29 _ => todo!("opcode {:04x}", opcode),
30 }
31 }
32 }
33
34 fn add_xy(&mut self, x: u8, y: u8) {
35 let arg1 = self.registers[x as usize];
36 let arg2 = self.registers[y as usize];
37
38 let (val, overflow) = arg1.overflowing_add(arg2);
39 self.registers[x as usize] = val;
40
41 if overflow {

Listing 5.26 Enabling the emulator to process multiple instructions

Continues execution
beyond processing a
single instruction

Increments
position_in_memory to
point to the next instruction

Short-circuits the function
to terminate execution
when the opcode 0x0000 is
encountered

167Implementing a CPU to establish that functions are also data
42 self.registers[0xF] = 1;
43 } else {
44 self.registers[0xF] = 0;
45 }
46 }
47 }
48
49 fn main() {
50 let mut cpu = CPU {
51 registers: [0; 16],
52 memory: [0; 4096],
53 position_in_memory: 0,
54 };
55
56 cpu.registers[0] = 5;
57 cpu.registers[1] = 10;
58 cpu.registers[2] = 10;
59 cpu.registers[3] = 10;
60
61 let mem = &mut cpu.memory;
62 mem[0] = 0x80; mem[1] = 0x14;
63 mem[2] = 0x80; mem[3] = 0x24;
64 mem[4] = 0x80; mem[5] = 0x34;
65
66 cpu.run();
67
68 assert_eq!(cpu.registers[0], 35);
69
70 println!("5 + 10 + 10 + 10 = {}", cpu.registers[0]);
71 }

When executed, CPU RIA/2 prints its impressive mathematical calculations:

5 + 10 + 10 + 10 = 35

5.7.4 CPU RIA/3: The Caller

We have nearly built all of the emulator machinery. This section adds the ability for
you to call functions. There is no programming language support, however, so any
programs still need to be written in binary. In addition to implementing functions,
this section validates an assertion made at the start—functions are also data.

EXPANDING THE CPU TO INCLUDE SUPPORT FOR A STACK

To build functions, we need to implement some additional opcodes. These are as follows:

 The CALL opcode (0x2nnn, where nnn is a memory address) sets position_
in_memory to nnn, the address of the function.

 The RETURN opcode (0x00EE) sets position_in_memory to the memory address
of the previous CALL opcode.

To enable these to opcodes to work together, the CPU needs to have some specialized
memory available for storing addresses. This is known as the stack. Each CALL opcode

Initializes a few
registers with values

Loads opcode 0x8014, which
adds register 1 to register 0

Loads opcode 0x8024, which
adds register 2 to register 0

Loads opcode 0x8034. which
adds register 3 to register 0

168 CHAPTER 5 Data in depth
adds an address to the stack by incrementing the stack pointer and writing nnn to that
position in the stack. Each RETURN opcode removes the top address by decrement-
ing the stack pointer. The following listing, an extract from listing 5.29, provides the
details to emulate the CPU.

1 struct CPU {
2 registers: [u8; 16],
3 position_in_memory: usize,
4 memory: [u8; 4096],
5 stack: [u16; 16],
6 stack_pointer: usize,
7 }

DEFINING A FUNCTION AND LOADING IT INTO MEMORY

Within computer science, a function is just a sequence of bytes that can be executed
by a CPU.4 CPUs start at the first opcode, then make their way to the end. The next
few code snippets demonstrate how it is possible to move from a sequence of bytes,
then convert that into executable code within CPU RIA/3.

1 Define the function. Our function performs two addition operations and then
returns—modest, yet informative. It is three opcodes long. The function’s inter-
nals look like this in a notation that resembles assembly language:

add_twice:
 0x8014
 0x8014
 0x00EE

2 Convert opcodes into Rust data types. Translating these three opcodes into
Rust’s array syntax involves wrapping them in square brackets and using a comma
for each number. The function has now become a [u16;3]:

let add_twice: [u16;3] = [
 0x8014,
 0x8014,
 0x00EE,
];

We want to be able to deal with one byte in the next step, so we’ll decompose
the [u16;3] array further into a [u8;6] array:

let add_twice: [u8;6] = [
 0x80, 0x14,
 0x80, 0x14,
 0x00, 0xEE,
];

Listing 5.27 Including a stack and stack pointer

4 The sequence of bytes must also be tagged as executable. The tagging process is explained in section 6.1.4.

The stack’s maximum height is 16.
After 16 nested function calls, the
program encounters a stack overflow.

Giving the stack_pointer type usize makes
it easier to index values within the stack.

169Implementing a CPU to establish that functions are also data
3 Load the function into RAM. Assuming that we wish to load that function into
memory address 0x100, here are two options. First, if we have our function
available as a slice, we can copy it across to memory with the copy_from_slice()
method:

fn main() {
 let mut memory: [u8; 4096] = [0; 4096];
 let mem = &mut memory;

 let add_twice = [
 0x80, 0x14,
 0x80, 0x14,
 0x00, 0xEE,
];

 mem[0x100..0x106].copy_from_slice(&add_twice);

 println!("{:?}", &mem[0x100..0x106]);
}

An alternative approach that achieves the same effect within memory without
requiring a temporary array is to overwrite bytes directly:

fn main() {
 let mut memory: [u8; 4096] = [0; 4096];
 let mem = &mut memory;

 mem[0x100] = 0x80; mem[0x101] = 0x14;
 mem[0x102] = 0x80; mem[0x103] = 0x14;
 mem[0x104] = 0x00; mem[0x105] = 0xEE;

 println!("{:?}", &mem[0x100..0x106]);
}

The approach taken in the last snippet is exactly what is used within the main() func-
tion of lines 96–98 of listing 5.29. Now that we know how to load a function into mem-
ory, it’s time to learn how to instruct a CPU to actually call it.

IMPLEMENTING THE CALL AND RETURN OPCODES

Calling a function is a three-step process:

1 Store the current memory location on the stack.
2 Increment the stack pointer.
3 Set the current memory location to the intended memory address.

Returning from a function involves reversing the calling process:

1 Decrement the stack pointer.
2 Retrieve the calling memory address from the stack.
3 Set the current memory location to the intended memory address.

Prints [128, 20,
128, 20, 0, 238]

Prints [128, 20,
128, 20, 0, 238]

170 CHAPTER 5 Data in depth

Mod
self.posit

in_mem
to a

jumpin
that add
The following listing, an extract from listing 5.29, focuses on the call() and ret()
methods.

41 fn call(&mut self, addr: u16) {
42 let sp = self.stack_pointer;
43 let stack = &mut self.stack;
44
45 if sp > stack.len() {
46 panic!("Stack overflow!")
47 }
48
49 stack[sp] = self.position_in_memory as u16;
50 self.stack_pointer += 1;
51 self.position_in_memory = addr as usize;
52 }
53
54 fn ret(&mut self) {
55 if self.stack_pointer == 0 {
56 panic!("Stack underflow");
57 }
58
59 self.stack_pointer -= 1;
60 let call_addr = self.stack[self.stack_pointer];
61 self.position_in_memory = call_addr as usize;
62 }

FULL CODE LISTING FOR CPU RIA/3: THE CALLER

Now that we have all of the pieces ready, let’s assemble those into a working program.
Listing 5.29 is able to compute a (hard-coded) mathematical expression. Here’s its
output:

5 + (10 * 2) + (10 * 2) = 45

This calculation is made without the source code that you may be used to. You will
need to make do with interpreting hexadecimal numbers. To help, figure 5.4 illus-
trates what happens within the CPU during cpu.run(). The arrows reflect the state of
the cpu.position_in_memory variable as it makes its way through the program.

 Listing 5.29 shows our completed emulator for CPU RIA/3, the Caller. You’ll find
the source code for this listing in ch5/ch5-cpu3/src/main.rs.

Listing 5.28 Adding the call() and ret() methods

Adds the current
position_in_memory to the
stack. This memory address
is two bytes higher than the
calling location as it is
incremented within the body
of the run() method.

Increments self.stack_pointer to
prevent self.position_in_memory
from being overwritten until it
needs to be accessed again in a
subsequent return

ifies
ion_
ory

ffect
g to
ress

Jumps to the position in
memory where an
earlier call was made

171Implementing a CPU to establish that functions are also data
 1 struct CPU {
 2 registers: [u8; 16],
 3 position_in_memory: usize,
 4 memory: [u8; 4096],
 5 stack: [u16; 16],
 6 stack_pointer: usize,
 7 }
 8
 9 impl CPU {
 10 fn read_opcode(&self) -> u16 {
 11 let p = self.position_in_memory;
 12 let op_byte1 = self.memory[p] as u16;
 13 let op_byte2 = self.memory[p + 1] as u16;
 14
 15 op_byte1 << 8 | op_byte2
 16 }
 17
 18 fn run(&mut self) {
 19 loop {
 20 let opcode = self.read_opcode();
 21 self.position_in_memory += 2;
 22
 23 let c = ((opcode & 0xF000) >> 12) as u8;
 24 let x = ((opcode & 0x0F00) >> 8) as u8;
 25 let y = ((opcode & 0x00F0) >> 4) as u8;
 26 let d = ((opcode & 0x000F) >> 0) as u8;
 27
 28 let nnn = opcode & 0x0FFF;
 29 // let kk = (opcode & 0x00FF) as u8;
 30
 31 match (c, x, y, d) {

Listing 5.29 Emulating a CPU that incorporates user-defined functions

21 00

80 14 80 14 00 EE

6 7

1

2 3 4

55 9

8

0x0000

0x0100

0x1000

21 00

�

�

Legend

Opcode
Address space

(not to scale)

0x1000 Memory addressFlow control

Step in program5 80 Value in memory

(hexadecimal)

Figure 5.4 Illustrating the control
flow of the function implemented
within CPU RIA/3 in listing 5.29

172 CHAPTER 5 Data in depth
 32 (0, 0, 0, 0) => { return; },
 33 (0, 0, 0xE, 0xE) => self.ret(),
 34 (0x2, _, _, _) => self.call(nnn),
 35 (0x8, _, _, 0x4) => self.add_xy(x, y),
 36 _ => todo!("opcode {:04x}", opcode),
 37 }
 38 }
 39 }
 40
 41 fn call(&mut self, addr: u16) {
 42 let sp = self.stack_pointer;
 43 let stack = &mut self.stack;
 44
 45 if sp > stack.len() {
 46 panic!("Stack overflow!")
 47 }
 48
 49 stack[sp] = self.position_in_memory as u16;
 50 self.stack_pointer += 1;
 51 self.position_in_memory = addr as usize;
 52 }
 53
 54 fn ret(&mut self) {
 55 if self.stack_pointer == 0 {
 56 panic!("Stack underflow");
 57 }
 58
 59 self.stack_pointer -= 1;
 60 let addr = self.stack[self.stack_pointer];
 61 self.position_in_memory = addr as usize;
 62 }
 63
 64 fn add_xy(&mut self, x: u8, y: u8) {
 65 let arg1 = self.registers[x as usize];
 66 let arg2 = self.registers[y as usize];
 67
 68 let (val, overflow_detected) = arg1.overflowing_add(arg2);
 69 self.registers[x as usize] = val;
 70
 71 if overflow_detected {
 72 self.registers[0xF] = 1;
 73 } else {
 74 self.registers[0xF] = 0;
 75 }
 76 }
 77 }
 78
 79 fn main() {
 80 let mut cpu = CPU {
 81 registers: [0; 16],
 82 memory: [0; 4096],
 83 position_in_memory: 0,
 84 stack: [0; 16],
 85 stack_pointer: 0,
 86 };

173Summary

t
 opco

0x
RE
 87
 88 cpu.registers[0] = 5;
 89 cpu.registers[1] = 10;
 90
 91 let mem = &mut cpu.memory;
 92 mem[0x000] = 0x21; mem[0x001] = 0x00;
 93 mem[0x002] = 0x21; mem[0x003] = 0x00;
 94 mem[0x004] = 0x00; mem[0x005] = 0x00;
 95
 96 mem[0x100] = 0x80; mem[0x101] = 0x14;
 97 mem[0x102] = 0x80; mem[0x103] = 0x14;
 98 mem[0x104] = 0x00; mem[0x105] = 0xEE;
 99
100 cpu.run();
101
102 assert_eq!(cpu.registers[0], 45);
103 println!("5 + (10 * 2) + (10 * 2) = {}", cpu.registers[0]);
104 }

As you delve into systems’ documentation, you will find that real-life functions are
more complicated than simply jumping to a predefined memory location. Operat-
ing systems and CPU architectures differ in calling conventions and in their capabil-
ities. Sometimes operands will need to be added to the stack; sometimes they’ll need
to be inserted into defined registers. Still, while the specific mechanics can differ,
the process is roughly similar to what you have just encountered. Congratulations
on making it this far.

5.7.5 CPU 4: Adding the rest

With a few extra opcodes, it’s possible to implement multiplication and many more
functions within your inchoate CPU. Check the source code that comes along with the
book, specifically the ch5/ch5-cpu4 directory at https://github.com/rust-in-action/
code for a fuller implementation of the CHIP-8 specification.

 The last step in learning about CPUs and data is to understand how control flow
works. Within CHIP-8, control flow works by comparing values in registers, then mod-
ifying position_in_memory, depending on the outcome. There are no while or for
loops within a CPU. Creating these in programming languages is the art of the com-
piler writer.

Summary
 The same bit pattern can represent multiple values, depending on its data type.
 Integer types within Rust’s standard library have a fixed width. Attempting to

increment past an integer’s maximum value is an error called an integer over-
flow. Decrementing past its lowest value is called integer underflow.

 Compiling programs with optimization enabled (for example, via cargo build
--release) can expose your programs to integer overflow and underflow as
run-time checks are disabled.

Sets opcode to 0x2100:
CALL the function at 0x100

Sets opcode to 0x2100:
CALL the function at 0x100

Sets opcode to 0x0000: HALT (no
strictly necessary as cpu.memory
is initialized with null bytes)

Sets opcode to 0x8014: ADD
register 1’s value to register 0

Sets opcode to 0x8014: ADD
register 1’s value to register 0

Sets
de to
00EE:
TURN

https://github.com/rust-in-action/code
https://github.com/rust-in-action/code

174 CHAPTER 5 Data in depth
 Endianness refers to the layout of bytes in multibyte types. Each CPU manufac-
turer decides the endianness of its chips. A program compiled for a little-endian
CPU malfunctions if one attempts to run it on a system with a big-endian CPU.

 Decimal numbers are primarily represented by floating-point number types.
The standard that Rust follows for its f32 and f64 types is IEEE 754. These types
are also known as single precision and double precision floating point.

 Within f32 and f64 types, identical bit patterns can compare as unequal (e.g.,
f32::NAN != f32::NAN), and differing bit patterns can compare as equal (e.g., -0
== 0). Accordingly, f32 and f64 only satisfy a partial equivalence relation. Pro-
grammers should be mindful of this when comparing floating-point values for
equality.

 Bitwise operations are useful for manipulating the internals of data structures.
However, doing so can often be highly unsafe.

 Fixed-point number formats are also available. These represent numbers by
encoding a value as the nominator and using an implicit denominator.

 Implement std::convert::From when you want to support type conversions.
But in cases where the conversion may fail, the std::convert::TryFrom trait is
the preferred option.

 A CPU opcode is a number that represents an instruction rather than data.
Memory addresses are also just numbers. Function calls are just sequences of
numbers.

Memory
This chapter provides you with some of the tacit knowledge held by systems pro-
grammers about how a computer’s memory operates. It aims to be the most accessi-
ble guide to pointers and memory management available. You will learn how
applications interact with an operating system (OS). Programmers who understand
these dynamics can use that knowledge to maximize their programs’ performance,
while minimizing their memory footprint.

 Memory is a shared resource, and the OS is an arbiter. To make its life easier,
the OS lies to your program about how much memory is available and where it’s
located. Revealing the truth behind those lies requires us to work through some
prior knowledge. This is the work of the first two sections of the chapter.

 Each of the four sections in this chapter builds on the previous one. None of
these sections assume that you’ve encountered the topic before. There is a fairly
large body of theory to cover, but all of it is explained by examples.

This chapter covers
 What pointers are and why some are smart

 What the terms stack and heap mean

 How a program views its memory
175

176 CHAPTER 6 Memory
 In this chapter, you’ll create your first graphical application. The chapter intro-
duces little new Rust syntax, as the material is quite dense. You’ll learn how to con-
struct pointers, how to interact with an OS via its native API, and how to interact with
other programs through Rust’s foreign function interface.

6.1 Pointers
Pointers are how computers refer to data that isn’t immediately accessible. This topic
tends to have an aura of mystique to it. That’s not necessary. If you’ve ever read a
book’s table of contents, then you’ve used a pointer. Pointers are just numbers that
refer to somewhere else.

 If you’ve never encountered systems programming before, there is a lot of termi-
nology to grapple with that describes unfamiliar concepts. Thankfully, though, what’s
sitting underneath the abstraction is not too difficult to understand. The first thing
to grasp is the notation used in this chapter’s figures. Figure 6.1 introduces three
concepts:

 The arrow refers to some location in memory that is determined at runtime
rather than at compile time.

 Each box represents a block of memory, and each block refers to a usize width.
Other figures use a byte or perhaps even a bit as the chunk of memory these
refer to.

 The rounded box underneath the Value label represents three contiguous
blocks of memory.

For newcomers, pointers are scary and, at the same time, awe-inspiring. Their proper
use requires that you know exactly how your program is laid out in memory. Imagine
reading a table of contents that says chapter 4 starts on page 97, but it actually starts
on page 107. That would be frustrating, but at least you could cope with the mistake.

 A computer doesn’t experience frustration. It also lacks any intuition that it has
pointed to the wrong place. It just keeps working, correctly or incorrectly, as if it had
been given the correct location. The fear of pointers is that you will introduce some
impossible-to-debug error.

Pointers are typically denoted as arrows.
Inside the computer, these are encoded as
an integer (equivalent to usize), which is the
memory adddress of their referent (the data
that the pointer refers to).

Pointer

Value

Figure 6.1 Depicting notation used in this chapter’s figures for
illustrating a pointer. In Rust, pointers are most frequently encountered
as &T and &mut T, where T is the type of the value.

177Pointers
 We can think of data stored within the program’s memory as being scattered
around somewhere within physical RAM. To make use of that RAM, there needs to be
some sort of retrieval system in place. An address space is that retrieval system.

 Pointers are encoded as memory addresses, which are represented as integers of
type usize. An address points to somewhere within the address space. For the moment,
think of the address space as all of your RAM laid out end to end in a single line.

 Why are memory addresses encoded as usize? Surely there’s no 64-bit computer
with 264 bytes of RAM. The range of the address space is a façade provided by the OS
and the CPU. Programs only know an orderly series of bytes, irrespective of the
amount of RAM that is actually available in the system. We discuss how this works later
in the virtual memory section of this chapter.

NOTE Another interesting example is the Option<T> type. Rust uses null
pointer optimization to ensure that an Option<T> occupies 0 bytes in the
compiled binary. The None variant is represented by a null pointer (a pointer
to invalid memory), allowing the Some(T) variant to have no additional indi-
rection.

What are the differences between references, pointers, and memory
addresses?
References, pointers, and memory addresses are confusingly similar:

 A memory address, often shortened to address, is a number that happens to
refer to a single byte in memory. Memory addresses are abstractions provided
by assembly languages.

 A pointer, sometimes expanded to raw pointer, is a memory address that points
to a value of some type. Pointers are abstractions provided by higher-level lan-
guages.

 A reference is a pointer, or in the case of dynamically sized types, a pointer and
an integer with extra guarantees. References are abstractions provided by
Rust.

Compilers are able to determine spans of valid bytes for many types. For example,
when a compiler creates a pointer to an i32, it can verify that there are 4 bytes that
encode an integer. This is more useful than simply having a memory address, which
may or may not point to any valid data type. Unfortunately, the programmer bears the
responsibility for ensuring the validity for types with no known size at compile time.

Rust’s references offer substantial benefits over pointers:

 References always refer to valid data. Rust’s references can only be used when
it’s legal to access their referent. I’m sure you’re familiar with this core tenet
of Rust by now!

 References are correctly aligned to multiples of usize. For technical reasons,
CPUs become quite temperamental when asked to fetch unaligned memory.

178 CHAPTER 6 Memory
6.2 Exploring Rust’s reference and pointer types
This section teaches you how to work with several of Rust’s pointer types. Rust in Action
tries to stick to the following guidelines when discussing these types:

 References—Signal that the Rust compiler will provide its safety guarantees.
 Pointers—Refer to something more primitive. This also includes the implication

that we are responsible for maintaining safety. (There is an implied connota-
tion of being unsafe.)

 Raw pointers—Used for types where it’s important to make their unsafe nature
explicit.

Throughout this section, we’ll expand on a common code fragment introduced by
listing 6.1. Its source code is available in ch6/ch6-pointer-intro.rs. In the listing, two
global variables, B and C, are pointed to by references. Those references hold the
addresses of B and C, respectively. A view of what’s happening follows the code in fig-
ures 6.2 and 6.3.

static B: [u8; 10] = [99, 97, 114, 114, 121, 116, 111, 119, 101, 108];
static C: [u8; 11] = [116, 104, 97, 110, 107, 115, 102, 105, 115, 104, 0];

fn main() {
 let a = 42;
 let b = &B;
 let c = &C;

 println!("a: {}, b: {:p}, c: {:p}", a, b, c);
}

(continued)

They operate much more slowly. To mitigate this problem, Rust’s types actu-
ally include padding bytes so that creating references to these does not slow
down your program.

 References are able to provide these guarantees for dynamically sized types.
For types with no fixed width in memory, Rust ensures that a length is kept
alongside the internal pointer. That way Rust can ensure that the program
never overruns the type’s space in memory.

NOTE The distinguishing characteristic between memory addresses and the
two higher abstractions is that the latter two have information about the type
of their referent.

Listing 6.1 Mimicking pointers with references

For simplicity, uses the same
reference type for this example.
Later examples distinguish smart
pointers from raw pointers and
require different types.

The {:p} syntax asks
Rust to format the
variable as a pointer
and prints the memory
address that the value
points to.

179Exploring Rust’s reference and pointer types
Listing 6.1 has three variables within its main() function. a is rather trivial; it’s just an
integer. The other two are more interesting. b and c are references. These refer to two
opaque arrays of data, B and C. For the moment, consider Rust references as equivalent
to pointers. The output from one execution on a 64-bit machine is as follows:

a: 42, b: 0x556fd40eb480, c: 0x556fd40eb48a

Figure 6.3 provides a view of the same example in an imaginary address space of 49
bytes. It has a pointer width of two bytes (16 bits). You’ll notice that the variables b and
c look different in memory, despite being the same type as in listing 6.1. That’s due to
that because the listing is lying to you. The gritty details and a code example that
more closely represents the diagram in figure 6.3 are coming shortly.

 As evidenced in figure 6.2, there’s one problem with portraying pointers as arrows
to disconnected arrays. These tend to de-emphasize that the address space is contigu-
ous and shared between all variables.

 For a more thorough examination of what happens under the hood, listing 6.2
produces much more output. It uses more sophisticated types instead of references to

116 104 97 110 107 115 102 105 115 104 0

42

99 97 114 114 121 116 111 119 101 108

c b a

Assuming a is
an i32, it takes
4 bytes of
memory.

C

B

Variables and are references.c b

References are 4 bytes wide on
32-bit CPUs and 8 bytes wide on
64-bit CPUs.

A partial view of the program’s address space

Figure 6.2 An abstract view of how two pointers operate alongside a standard integer.
The important lesson here is that the programmer might not know the location of the
referent data beforehand.

If you run the code, the exact
memory addresses will be
different on your machine.

180 CHAPTER 6 Memory
demonstrate how these differ internally and to correlate more accurately what is pre-
sented in figure 6.3. The following shows the output from listing 6.2:

a (an unsigned integer):
 location: 0x7ffe8f7ddfd0
 size: 8 bytes
 value: 42

b (a reference to B):
 location: 0x7ffe8f7ddfd8
 size: 8 bytes
 points to: 0x55876090c830

c (a "box" for C):
 location: 0x7ffe8f7ddfe0
 size: 16 bytes
 points to: 0x558762130a40

The NULL byte—a program’s dead zone. If a
pointer points to here and is then dereferenced,
the program typically crashes.

160 42

116 104

97 110 107 115 102 105 115 104

0

32100

99 97

114 114 121 116 111 119 101 108

Smart pointer

0 0

u16 (16 == 0x10)

Integer

u16 (32 == 0x20)i16

ab

i16

Raw pointer

c

Abstract data type

Variable

Concrete

representation

Length field Address field

A zero-terminated
buffer, which is
the internal
representation
of strings in the
C language.

Knowing how to
convert these
to Rust types is
useful for working
with external code
via its foreign
function interface.

Together, c and
C are a CStr in
Rust’s type system.

C

A fixed-width
buffer of length
10 that contains
bytes without a
terminator.

When used behind
a pointer type, a
buffer is often called
the backing array.

Together, b and B

can almost create
the String type
in Rust, which
also contains a
capacity parameter.

B

Memory layout

0x0

0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8

0xA 0xB 0xC 0xD 0xE 0xF 0x10 0x11

0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19

0x1E0x1A 0x1B 0x1C 0x1D 0x1F 0x20 0x21

0x260x22 0x23 0x24 0x25 0x27 0x28 0x29

0x2E0x2A 0x2B 0x2C 0x2D 0x2F 0x30 0x31

Figure 6.3 An illustrative address space of the program provided in listing 6.1. It provides an illustration of
the relationship between addresses (typically written in hexadecimal) and integers (typically written in
decimal). White cells represent unused memory.

181Exploring Rust’s reference and pointer types
B (an array of 10 bytes):
 location: 0x55876090c830
 size: 10 bytes
 value: [99, 97, 114, 114, 121, 116, 111, 119, 101, 108]

C (an array of 11 bytes):
 location: 0x55876090c83a
 size: 11 bytes
 value: [116, 104, 97, 110, 107, 115, 102, 105, 115, 104, 0

 1 use std::mem::size_of;
 2
 3 static B: [u8; 10] = [99, 97, 114, 114, 121, 116, 111, 119, 101, 108];
 4 static C: [u8; 11] = [116, 104, 97, 110, 107, 115, 102, 105, 115, 104, 0];
 5
 6 fn main() {
 7 let a: usize = 42;
 8
 9 let b: &[u8; 10] = &B;
10
11 let c: Box<[u8]> = Box::new(C);
12
13 println!("a (an unsigned integer):");
14 println!(" location: {:p}", &a);
15 println!(" size: {:?} bytes", size_of::<usize>());
16 println!(" value: {:?}", a);
17 println!();
18
19 println!("b (a reference to B):");
20 println!(" location: {:p}", &b);
21 println!(" size: {:?} bytes", size_of::<&[u8; 10]>());
22 println!(" points to: {:p}", b);
23 println!();
24
25 println!("c (a "box" for C):");
26 println!(" location: {:p}", &c);
27 println!(" size: {:?} bytes", size_of::<Box<[u8]>>());
28 println!(" points to: {:p}", c);
29 println!();
30
31 println!("B (an array of 10 bytes):");
32 println!(" location: {:p}", &B);
33 println!(" size: {:?} bytes", size_of::<[u8; 10]>());
34 println!(" value: {:?}", B);
35 println!();
36
37 println!("C (an array of 11 bytes):");
38 println!(" location: {:p}", &C);
39 println!(" size: {:?} bytes", size_of::<[u8; 11]>());
40 println!(" value: {:?}", C);
41 }

Listing 6.2 Comparing references and Box<T> to several types

usize is the memory address size for the
CPU the code is compiled for. That CPU is
called the compile target.

&[u8; 10] reads as “a reference to an array of 10 bytes.” The array is located in static
memory, and the reference itself (a pointer of width usize bytes) is placed on the stack.

The Box<[u8]> type is a boxed byte
slice. When we place values inside a
box, ownership of the value moves to
the owner of the box.

182 CHAPTER 6 Memory

,

s().
st
his

)
,
.

8,
For readers who are interested in decoding the text within B and C, listing 6.3 is a
short program that (almost) creates a memory address layout that resembles figure
6.3 more closely. It contains a number of new Rust features and some relatively arcane
syntax, both of which haven’t been introduced yet. These will be explained shortly.

use std::borrow::Cow;

use std::ffi::CStr;

use std::os::raw::c_char;

static B: [u8; 10] = [99, 97, 114, 114, 121, 116, 111, 119, 101, 108];
static C: [u8; 11] = [116, 104, 97, 110, 107, 115, 102, 105, 115, 104, 0];

fn main() {
 let a = 42;

 let b: String;

 let c: Cow<str>;

 unsafe {

 let b_ptr = &B as *const u8 as *mut u8;

 b = String::from_raw_parts(b_ptr, 10, 10);

 let c_ptr = &C as *const u8 as *const c_char;

 c = CStr::from_ptr(c_ptr).to_string_lossy();
 }

 println!("a: {}, b: {}, c: {}", a, b, c);
}

In listing 6.3, Cow stands for copy on write. This smart pointer type is handy when an
external source provides a buffer. Avoiding copies increases runtime performance.
std::ffi is the foreign function interface module from Rust’s standard library. use
std::os::raw::c_char; is not strictly needed, but it does make the code’s intent
clear. C does not define the width of its char type in its standard, although it’s one
byte wide in practice. Retrieving the type alias c_char from the std::os:raw module
allows for differences.

Listing 6.3 Printing from strings provided by external sources

A smart pointer type that reads from its pointer
location without needing to copy it first

CStr is a C-like string type
that allows Rust to read in
zero-terminated strings.

c_char, a type alias for Rust’s i8
type, presents the possibility of
a platform-specific nuances.

Introduces each of the variables so that these are accessible
from println! later. If we created b and c within the unsafe
block, these would be out of scope later.

String is a smart pointer
type that holds a pointer to
a backing array and a field
to store its size.

Cow accepts a type parameter for
the data it points to; str is the type
returned by CStr.to_string_lossy(),
so it is appropriate here.

References cannot be
cast directly to *mut T
the type required by
String::from_raw_part
But *const T can be ca
to *mut T, leading to t
double cast syntax.

String::from_raw_parts()
accepts a pointer (*mut T
to an array of bytes, a size
and a capacity parameter

Converts a *const u8 to a
*const i8, aliased to c_char.
The conversion to i8 works
because we remain under 12
following the ASCII standard.

Conceptually, CStr::from_ptr()
takes responsibility for reading

the pointer until it reaches 0;
then it generates Cow<str>

from the result.

183Exploring Rust’s reference and pointer types
 To thoroughly understand the code in listing 6.3, there is quite a bit of ground to
cover. We first need to work through what raw pointers are and then discuss a number
of feature-rich alternatives that have been built around them.

6.2.1 Raw pointers in Rust

A raw pointer is a memory address without Rust’s standard guarantees. These are inher-
ently unsafe. For example, unlike references (&T), raw pointers can be null.

 If you’ll forgive the syntax, raw pointers are denoted as *const T and *mut T for
immutable and mutable raw pointers, respectively. Even though each is a single type,
these contain three tokens: *, const or mut. Their type, T, a raw pointer to a String,
looks like *const String. A raw pointer to an i32 looks like *mut i32. But before we
put pointers into practice, here are two other things that are useful to know:

 The difference between a *mut T and a *const T is minimal. These can be freely cast
between one another and tend to be used interchangeably, acting as in-source
documentation.

 Rust references (&mut T and &T) compile down to raw pointers. That means that it’s
possible to access the performance of raw pointers without needing to venture
into unsafe blocks.

The next listing provides a small example that coerces a reference to a value (&T), cre-
ating a raw pointer from an i64 value. It then prints the value and its address in mem-
ory via the {:p} syntax.

fn main() {
 let a: i64 = 42;
 let a_ptr = &a as *const i64;

 println!("a: {} ({:p})", a, a_ptr);
}

The terms pointer and memory address are sometimes used interchangeably. These are
integers that represent a location in virtual memory. From the compiler’s point of
view, though, there is one important difference. Rust’s pointer types *const T and
*mut T always point to the starting byte of T, and these also know the width of type T in
bytes. A memory address might refer to anywhere in memory.

 An i64 is 8-bytes wide (64 bits ÷ 8 bits per byte). Therefore, if an i64 is stored at
address 0x7fffd, then each of the bytes between 0x7ffd..0x8004 must be fetched
from RAM to recreate the integer’s value. The process of fetching data from RAM
from a pointer is known as dereferencing a pointer. The following listing identifies a
value’s address by casting a reference to it as a raw pointer via std::mem::transmute.

Listing 6.4 Creating a raw pointer (*const T)

Casts a reference to the
variable a (&a) to a constant
raw pointer i64 (*const i64)

Prints the value of the variable
a (42) and its address in
memory (0x7ff…)

184 CHAPTER 6 Memory
fn main() {
 let a: i64 = 42;
 let a_ptr = &a as *const i64;
 let a_addr: usize = unsafe {
 std::mem::transmute(a_ptr)
 };

 println!("a: {} ({:p}...0x{:x})", a, a_ptr, a_addr + 7);

}

Under the hood, references (&T and &mut T) are implemented as raw pointers. These
come with extra guarantees and should always be preferred.

WARNING Accessing the value of a raw pointer is always unsafe. Handle with
care.

Using raw pointers in Rust code is like working with pyrotechnics. Usually the results
are fantastic, sometimes they’re painful, and occasionally they’re tragic. Raw pointers
are often handled in Rust code by the OS or a third-party library.

 To demonstrate their volatility, let’s work through a quick example with Rust’s raw
pointers. Creating a pointer of arbitrary types from any integer is perfectly legal.
Dereferencing that pointer must occur within an unsafe block, as the following snip-
pet shows. An unsafe block implies that the programmer takes full responsibility for
any consequences:

fn main() {
 let ptr = 42 as *const Vec<String>;

 unsafe {
 let new_addr = ptr.offset(4);
 println!("{:p} -> {:p}", ptr, new_addr);
 }
}

To reiterate, raw pointers are not safe. These have a number of properties that mean
that their use is strongly discouraged within day-to-day Rust code:

 Raw pointers do not own their values. The Rust compiler does not check that the
referent data is still valid when these are accessed.

 Multiple raw pointers to the same data are allowed. Every raw pointer can have write,
read-write access to data. This means that there is no time when Rust can guar-
antee that shared data is valid.

Notwithstanding those warnings, there are a small number of valid reasons to make
use of raw pointers:

Listing 6.5 Identifying a value’s address

Interprets *const i64 as usize.
Using transmute() is highly unsafe
but is used here to postpone
introducing more syntax.

You can create pointers safely from
any integral value. An i32 is not a
Vec<String>, but Rust is quite
comfortable ignoring that here.

185Exploring Rust’s reference and pointer types
 It’s unavoidable. Perhaps some OS call or third-party code requires a raw pointer.
Raw pointers are common within C code that provides an external interface.

 Shared access to something is essential and runtime performance is paramount. Perhaps
multiple components within your application require equal access to some
expensive-to-compute variable. If you’re willing to take on the risk of one of
those components poisoning every other component with some silly mistake,
then raw pointers are an option of last resort.

6.2.2 Rust’s pointer ecosystem

Given that raw pointers are unsafe, what is the safer alternative? The alternative is to
use smart pointers. In the Rust community, a smart pointer is a pointer type that has
some kind of superpower, over and above the ability to deference a memory address.
You will probably encounter the term wrapper type as well. Rust’s smart pointer types
tend to wrap raw pointers and bestow them with added semantics.

 A narrower definition of smart pointer is common in the C communities. There
authors (generally) imply that the term smart pointer means the C equivalents of
Rust’s core::ptr::Unique, core::ptr::Shared, and std::rc::Weak types. We will
introduce these types shortly.

NOTE The term fat pointer refers to memory layout. Thin pointers, such as
raw pointers, are a single usize wide. Fat pointers are usually two usize wide,
and occasionally more.

Rust has an extensive set of pointer (and pointer-like) types in its standard library.
Each has its own role, strengths, and weaknesses. Given their unique properties,
rather than writing these out as a list, let’s model these as characters in a card-based
role-playing game, as shown in figure 6.4.

 Each of the pointer types introduced here are used extensively throughout the
book. As such, we’ll give these fuller treatment when that’s needed. For now, the two
novel attributes that appear within the Powers section of some of these cards are inte-
rior mutability and shared ownership. These two terms warrant some discussion.

 With interior mutability, you may want to provide an argument to a method that
takes immutable values, yet you need to retain mutability. If you’re willing to pay the
runtime performance cost, it’s possible to fake immutability. If the method requires
an owned value, wrap the argument in Cell<T>. References can also be wrapped in
RefCell<T>. It is common when using the reference counted types Rc<T> and Arc<T>,
which only accept immutable arguments, to also wrap those in Cell<T> or Ref-
Cell<T>. The resulting type might look like Rc<RefCell<T>>. This means that you pay
the runtime cost twice but with significantly more flexibility.

 With shared ownership, some objects, such as a network connection or, perhaps,
access to some OS service, are difficult to mould into the pattern of having a single
place with read-write access at any given time. Code might be simplified if two parts of

186 CHAPTER 6 Memory
the program can share access to that single resource. Rust allows you to do this, but
again, at the expense of a runtime cost.

6.2.3 Smart pointer building blocks

You might find yourself in a situation where you want to build your own smart pointer
type with its own semantics. Perhaps a new research paper has been released, and you
want to incorporate its results into your own work. Perhaps you’re conducting the

Raw Pointer

The cousins mut T and*

*const T are the free radicals

of the pointer world. Lightning

fast, but wildly unsafe.

Powers

• Speed

• Can interact with

the outside world

Weaknesses

• Unsafe

Box<T>

Store anything in a box. Accepts

almost any type for long-term

storage. The workhorse of a

new, safe programming era.

Powers

• Store a value in

central storage

in a location

called “the heap”

Weaknesses

• Size increase

Rc<T>

The reference counted pointer, Rc<T>

is Rust's competent, yet miserly

bookkeeper. It knows who has

borrowed what and when.

Powers

• Shared access

to values

Weaknesses

• Size increase

• Runtime cost

• Not threadsafe

Cell<T>

An expert in metamorphosis,

Cell<T> confers the ability to

mutate immutable values.

Powers

• Interior mutability

Weaknesses

• Size increase

• Performance

RefCell<T>

Performs mutation on immutable

references with RefCel<T>.

Its mind-bending powers

come with some costs.

Weaknesses

• Size increase

• Runtime cost

• Lack of compile-

time guarantees

Cow<T>

Why write something down when

you only need to read it? Perhaps

you only want to make modifications.

This is the role of Cow (copy on write).

Powers

• Avoids writes

when only read

access is used

Weaknesses

• Possible size

increase

Arc<T>

Your program’s main storage system.

Vec<T> keeps your data orderly

as values are created and destroyed.

Powers

• Grows dynamically

as required

Weaknesses

• Can over

allocate size

RawVec<T>

The bedrock of Vec<T> and

other dynamically sized types.

Understands how to provide a

home for your data as needed.

Powers

• Grows dynamically

as required

• Works with the

memory allocator

to find space

Weaknesses

• Not directly

applicable from

your code

Unique<T>

Sole owner of a value,

a unique pointer is guaranteed

to possess full control.

Powers

• Base for types

such as Strings,

requiring exclusive

possession of values.

Weaknesses

• Not appropriate

for application

code directly

Arc<T>

Arc<T> is Rust’s ambassador.

It can share values across threads,

guaranteeing that these will

not interfere with each other.

Powers

• Shared access

to values

• Threadsafe

Weaknesses

• Size increase

• Runtime cost

String

Acting as a guide on how to

deal with the uncertainties of

user input, String shows us how

to build safe abstractions.

Powers

• Grows dynamically

as required

• Guarantees correct

encoding at runtime

Weaknesses

• Can over

allocate size

Shared<T>

Sharing ownership is hard.

Shared<T> makes life

a little bit easier.

Powers

• Shared ownership

• Can align memory

to T’s width, even

when empty

Weaknesses

• Not appropriate

for application

code directly

Powers

• Interior mutability

• Can be nested

within Rc and Arc,

which only accept

immutable refs

Figure 6.4 A fictitious role-playing card game describing the characteristics of Rust's smart pointer types

187Providing programs with memory for their data
research. Regardless, it might be useful to know that Rust’s pointer types are extensi-
ble—these are designed with extension in mind.

 All of the programmer-facing pointer types like Box<T> are built from more primi-
tive types that live deeper within Rust, often in its core or alloc modules. Addition-
ally, the C++ smart pointer types have Rust counterparts. Here are some useful starting
points for you when building your own smart pointer types:

 core::ptr::Unique is the basis for types such as String, Box<T>, and the pointer
field Vec<T>.

 core::ptr::Shared is the basis for Rc<T> and Arc<T>, and it can handle situa-
tions where shared access is desired.

In addition, the following tools can also be handy in certain situations:

 Deeply interlinked data structures can benefit from std::rc::Weak and std::arc::
Weak for single and multi-threaded programs, respectively. These allow access to data
within an Rc/Arc without incrementing its reference count. This can prevent
never-ending cycles of pointers.

 The alloc::raw_vec::RawVec type underlies Vec<T> and VecDeq<T>. An expand-
able, double-ended queue that hasn’t appeared in the book so far, it under-
stands how to allocate and deallocate memory in a smart way for any given type.

 The std::cell::UnsafeCell type sits behind both Cell<T> and RefCell<T>. If you
would like to provide interior mutability to your types, its implementation is
worth investigating.

A full treatment of building new safe pointers touches on some of Rust’s internals.
These building blocks have their own building blocks. Unfortunately, explaining every
detail will diverge too far from our goals for this chapter.

NOTE Inquisitive readers should investigate the source code of the standard
library’s pointer types. For example, the std::cell::RefCell type is docu-
mented at https://doc.rust-lang.org/std/cell/struct.RefCell.html. Clicking
the [src] button on that web page directs you to the type’s definition.

6.3 Providing programs with memory for their data
This section attempts to demystify the terms the stack and the heap. These terms often
appear in contexts that presuppose you already know what they mean. That isn’t the
case here. We’ll cover the details of what they are, why they exist, and how to make use
of that knowledge to make your programs leaner and faster.

 Some people hate wading through the details, though. For those readers, here is
the salient difference between the stack and the heap:

 The stack is fast.
 The heap is slow.

That difference leads to the following axiom: “When in doubt, prefer the stack.” To
place data onto the stack, the compiler must know the type’s size at compile time.

https://doc.rust-lang.org/std/cell/struct.RefCell.html

188 CHAPTER 6 Memory
Translated to Rust, that means, “When in doubt, use types that implement Sized.”
Now that you’ve got the gist of those terms, it’s time to learn when to take the slow
path and how to avoid it when you want to take a faster one.

6.3.1 The stack

The stack is often described by analogy. Think of a stack of dinner plates waiting in
the cupboard of a commercial kitchen. Cooks are taking plates off the stack to serve
food, and dishwashers are placing new plates on the top.

 The unit (the plate) of a computing stack is the stack frame, also known as the allo-
cation record. You are probably used to thinking of this as a group of variables and other
data. Like many descriptions in computing, the stack and the heap are analogies that
only partially fit. Even though the stack is often compared by analogy to a stack of din-
ner plates waiting in the cupboard, unfortunately, that mental picture is inaccurate.
Here are some differences:

 The stack actually contains two levels of objects: stack frames and data.
 The stack grants programmers access to multiple elements stored within it,

rather than the top item only.
 The stack can include elements of arbitrary size, where the implication of the

dinner plate analogy is that all elements must be of the same size.

So why is the stack called the stack? Because of the usage pattern. Entries on the stack
are made in a Last In, First Out (LIFO) manner.

 The entries in the stack are called stack frames. Stack frames are created as function
calls are made. As a program progresses, a cursor within the CPU updates to reflect
the current address of the current stack frame. The cursor is known as the stack pointer.

 As functions are called within functions, the stack pointer decreases in value as the
stack grows. When a function returns, the stack pointer increases.

 Stack frames contain a function’s state during the call. When a function is called
within a function, the older function’s values are effectively frozen in time. Stack
frames are also known as activation frames, and less commonly allocation records.1

 Unlike dinner plates, every stack frame is a different size. The stack frame contains
space for its function’s arguments, a pointer to the original call site, and local vari-
ables (except the data which is allocated on the heap).

NOTE If you are unfamiliar with what the term call site means, see the CPU
emulation section in chapter 5.

To understand what is happening more fully, let’s consider a thought experiment.
Imagine a diligent, yet absurdly single-minded cook in a commercial kitchen. The
cook takes each table’s docket and places those in a queue. The cook has a fairly bad
memory, so each current order is written down a notebook. As new orders come in,

1 To be precise, the activation frame is called a stack frame when allocated on the stack.

189Providing programs with memory for their data
the cook updates the notebook to refer to the new order. When orders are complete,
the notebook page is changed to the next item in the queue. Unfortunately, for cus-
tomers in this restaurant, the book operates in a LIFO manner. Hopefully, you will not
be one of the early orders during tomorrow’s lunch rush.

 In this analogy, the notebook plays the role of the stack pointer. The stack itself is
comprised of variable-length dockets, representing stack frames. Like stack frames,
restaurant dockets contain some metadata. For example, the table number can act as
the return address.

 The stack’s primary role is to make space for local variables. Why is the stack fast?
All of a function’s variables are side by side in memory. That speeds up access.

Improving the ergonomics of functions that can only accept String or &str
As a library author, it can simplify downstream application code if your functions can
accept both &str and String types. Unfortunately, these two types have different
representations in memory. One (&str) is allocated on the stack, the other (String)
allocates memory on the heap. That means that types cannot be trivially cast between
one another. It’s possible, however, to work around this with Rust’s generics.

Consider the example of validating a password. For the purposes of the example, a
strong password is one that’s at least 6 characters long. The following shows how to
validate the password by checking its length:

fn is_strong(password: String) -> bool {
 password.len() > 5
}

is_strong can only accept String. That means that the following code won’t work:

let pw = "justok";
let is_strong = is_strong(pw);

But generic code can help. In cases where read-only access is required, use functions
with the type signature fn x<T: AsRef<str>> (a: T) rather than fn x(a: String).
The fairly unwieldy type signature reads “as function x takes an argument password
of type T, where T implements AsRef<str>.” Implementors of AsRef<str> behave
as a reference to str even when these are not.

Here is the code snippet again for the previous listing, accepting any type T that
implements AsRef<str>. It now has the new signature in place:

fn is_strong<T: AsRef<str>>(password: T) -> bool {
 password.as_ref().len() > 5
}

When read-write access to the argument is required, normally you can make use of
AsRef<T>'s sibling trait AsMut<T>. Unfortunately for this example, &'static str can-
not become mutable and so another strategy can be deployed: implicit conversion.

Provides a
String or a &str
as password

190 CHAPTER 6 Memory
6.3.2 The heap

This section introduces the heap. The heap is an area of program memory for types
that do not have known sizes at compile time.

 What does it mean to have no known size at compile time? In Rust, there are two
meanings. Some types grow and shrink over time as required. Obvious cases are
String and Vec<T>. Other types are unable to tell the Rust compiler how much mem-
ory to allocate even though these don’t change size at runtime. These are known as
dynamically sized types. Slices ([T]) are the commonly cited example. Slices have no
compile-time length. Internally, these are a pointer to some part of an array. But slices
actually represent some number of elements within that array.

 Another example is a trait object, which we’ve not described in this book so far. Trait
objects allow Rust programmers to mimic some features of dynamic languages by
allowing multiple types to be wedged into the same container.

WHAT IS THE HEAP?
You will gain a fuller understanding of what the heap is once you work through the
next section on virtual memory. For now, let’s concentrate on what it is not. Once
those points are clarified, we’ll then work our way back toward some form of truth.

 The word “heap” implies disorganization. A closer analogy would be warehouse
space in some medium-sized business. As deliveries arrive (as variables are created),
the warehouse makes space available. As the business carries out its work, those mate-
rials are used, and the warehouse space can now be made available for new deliveries.
At times, there are gaps and perhaps a bit of clutter. But overall, there is a good sense
of order.

 Another mistake is that the heap has no relationship to the data structure that is
also known as a heap. That data structure is often used to create priority queues. It’s
an incredibly clever tool in its own right, but right now it’s a complete distraction. The
heap is not a data structure. It’s an area of memory.

(continued)

It’s possible to ask Rust to accept only those types that can be converted to String.
The following example performs that conversion within the function and applies any
required business logic to that newly created String. This can circumvent the issue
of &str being an immutable value.

fn is_strong<T: Into<String>>(password: T) -> bool {
 password.into().len() > 5
}

This implicit conversion strategy does have significant risks, though. If a string-ified
version of the password variable needs to be created multiple times in the pipeline,
it would be much more efficient to require an explicit conversion within the calling
application. That way the String would be created once and reused.

191Providing programs with memory for their data
 Now that those two distinctions are made, let’s inch toward an explanation. The
critical difference from a usage point of view is that variables on the heap must be
accessed via a pointer, whereas this is not required with variables accessed on the stack.

 Although it’s a trivial example, let’s consider two variables, a and b. These both
represent the integers 40 and 60, respectively. In one of those cases though, the inte-
ger happens to live on the heap, as in this example:

let a: i32 = 40;
let b: Box<i32> = Box::new(60);

Now, let’s demonstrate that critical difference. The following code won’t compile:

let result = a + b;

The boxed value assigned to b is only accessible via a pointer. To access that value, we
need to dereference it. The dereference operator is a unary *, which prefixes the vari-
able name:

let result = a + *b;

This syntax can be difficult to follow at first because the symbol is also used for multi-
plication. It does, however, become more natural over time. The following listing
shows a complete example where creating variables on the heap implies constructing
that variable via a pointer type such as Box<T>.

fn main() {
 let a: i32 = 40;
 let b: Box<i32> = Box::new(60);

 println!("{} + {} = {}", a, b, a + *b);

}

To get a feel for what the heap is and what is happening within memory as a program
runs, let’s consider a tiny example. In this example, all we will do is to create some
numbers on the heap and then add their values together. When run, the program in
listing 6.7 produces some fairly trivial output: two 3s. Still, it’s really the internals of
the program’s memory that are important here, not its results.

 The code for the next listing is in the file ch6/ch6-heap-via-box/src/main.rs. A
pictorial view of the program’s memory as it runs (figure 6.5) follows the code. Let’s
first look at the program’s output:

3 3

Listing 6.6 Creating variables on the heap

40 lives on the stack.

60 lives on the heap.

To access 60, we need
to dereference it.

192 CHAPTER 6 Memory
 1 use std::mem::drop;
 2
 3 fn main() {
 4 let a = Box::new(1);
 5 let b = Box::new(1);
 6 let c = Box::new(1);
 7
 8 let result1 = *a + *b + *c;
 9
10 drop(a);
11 let d = Box::new(1);
12 let result2 = *b + *c + *d;
13
14 println!("{} {}", result1, result2);
15 }

Listing 6.7 places four values on the heap and removes one. It contains some new or,
at least, less familiar syntax that might be worthwhile to cover and/or recap:

 Box::new(T) allocates T on the heap. Box is a term that can be deceptive if you
don’t share its intuition.

Something that has been boxed lives on the heap, with a pointer to it on the
stack. This is demonstrated in the first column of figure 6.5, where the number
0x100 at address 0xfff points to the value 1 at address 0x100. However, no
actual box of bytes encloses a value, nor is the value hidden or concealed in
some way.

 std::mem::drop brings the function drop() into local scope. drop() deletes objects
before their scope ends.

Types that implement Drop have a drop() method, but explicitly calling it is
illegal within user code. std::mem::drop is an escape hatch from that rule.

 Asterisks next to variables (*a, *b, *c, and *d) are unary operators. This is the derefer-
ence operator. Dereferencing a Box::(T) returns T. In our case, the variables a, b,
c, and d are references that refer to integers.

In figure 6.5, each column illustrates what happens inside memory at 6 lines of code.
The stack appears as the boxes along the top, and the heap appears along the bottom.
The figure omits several details, but it should help you gain an intuition about the
relationship between the stack and the heap.

NOTE If you have experience with a debugger and want to explore what is
happening, be sure to compile your code with no optimizations. Compile your
code with cargo build (or cargo run) rather than cargo build --release.
Using the --release flag actually ends up optimizing all the allocations and
arithmetic. If you are invoking rustc manually, use the command rustc
--codegen opt-level=0.

Listing 6.7 Allocating and deallocating memory on the heap via Box<T>

Brings manual drop()
into local scope

Allocates values
on the heap

The unary *, the dereference operator,
returns the value within the box, and
result1 holds the value 3.

Invokes drop(), freeing
memory for other uses

193Providing programs with memory for their data
Figure 6.5 A view into a program’s memory layout during the execution of listing 6.7

0xfff

0xff7

0xfef

0xfe7

0xfdf

0x120

0x118

0x110

0x108

0x100

let a = Box::new(1)

1

1 0 0

1

1 0 0

let b = Box::new(1)

1 0 8

1 1

1

let c = Box::new(1)

let result1 = *a + *b + *c;

1

3

1 0 0

1 0 8

1 1 0

1

1

1

1 0 0

1 0 8

1 1 0

3

1

1

1

1 0 0

1 0 8

1 1 0

drop(a)

3

1

1

1

1 0 8

11 0

let d = Box::new(1)

1 0 0

The lifetime of the variable

a has ended at this point.

Accessing this memory

address is now invalid. Its data

will still be there on the stack,

but it's to accessimpossible

it within safe Rust.

The boxed value
probably hasn’t
been deleted from
the heap, but the
memory allocator
has marked that
location as free
for reuse.

1 0 0

The space
occupied by a
is reused by d.

Memory layout over time

i32 values are allocated on
the heap and a pointer to
that value’s address is
placed on the stack
(the integers are boxed).

The three integers
are added together
and their sum is
placed on the stack.

Program execution over time

Rust's super power

For simplicity’s sake, this example’s

address space is 4096 bytes. In a

more realistic scenario, such as with

a a 64-bit CPU, the address space

is 264 bytes long.

The stack grows downwards, rather

than upwards as its name suggests.

The top box represents the .stack

The heap begins at the

bottom of the address space,

plus an offset, which is

256 (0x100) here.

The space between 0 and

the offset is reserved for the

program’s executable

instructions and variables

that last the lifetime of

the program.

The bottom box represents

the .heap

How to interpret this diagram

0xfff

0xff7

0xfef

0xfe7

0xfdf

0x120

0x118

0x110

0x108

0x100 1

1 0 0

194 CHAPTER 6 Memory
6.3.3 What is dynamic memory allocation?

At any given time, a running program has a fixed number of bytes with which to get its
work done. When the program would like more memory, it needs to ask for more
from the OS. This is known as dynamic memory allocation and is shown in figure 6.6.
Dynamic memory allocation is a three-step process:

1 Request memory from the OS via a system call. In the UNIX family of operating
systems, this system call is alloc(). In MS Windows, the call is HeapAlloc().

2 Make use of the allocated memory in the program.
3 Release memory that isn’t needed back to the OS via free() for UNIX systems

and HeapFree() for Windows.

As it turns out, there is an intermediary between the program and the OS: the alloca-
tor, a specialist subprogram that is embedded in your program behind the scenes. It
will often perform optimizations that avoid lots of work within the OS and CPU.

 Let’s examine the performance impact of dynamic memory allocation and strate-
gies to reduce that impact. Before starting, let’s recap why there’s a performance dif-
ference between the stack and the heap. Remember that the stack and the heap are
conceptual abstractions only. These do not exist as physical partitions of your com-
puter’s memory. What accounts for their different performance characteristics?

 Accessing data on the stack is fast because a function’s local variables, which are
allocated on the stack, reside next to each other in RAM. This is sometimes referred
to as a contiguous layout.

 A contiguous layout is cache-friendly. Alternatively, variables allocated on the heap
are unlikely to reside next to each other. Moreover, accessing data on the heap
involves dereferencing the pointer. That implies a page table lookup and a trip to
main memory. Table 6.1 summarizes these differences.

Figure 6.6 Conceptual view of dynamic memory allocation. Requests
for memory originate and terminate at the program level but involve
several other components. At each stage, the components may short-
circuit the process and return quickly.

Program Allocator OS Hardware

Within program’s control Outside of program’s control

Smart bookkeeping by the allocator can avoid lots of extra work
by the operating system and the computer’s hardware.

Request for memory

195Providing programs with memory for their data
There is a trade-off for the stack’s increased speed. Data structures on the stack must
stay the same size during the lifetime of the program. Data structures allocated on the
heap are more flexible. Because these are accessed via a pointer, that pointer can
be changed.

 To quantify this impact, we need to learn how to measure the cost. To get a large
number of measurements, we need a program that creates and destroys many values.
Let’s create a toy program. Figure 6.7 shows show a background element to a video
game.

After running listing 6.9, you should see a window appear on your screen filled with a
dark grey background. White snow-like dots will start to float from the bottom and
fade as they approach the top. If you check the console output, streams of numbers
will appear. Their significance will be explained once we discuss the code. Listing 6.9
contains three major sections:

 A memory allocator (the ReportingAllocator struct) records the time that
dynamic memory allocations take.

 Definitions of the structs World and Particle and how these behave over time.
 The main() function deals with window creation and initialization.

Table 6.1 A simplistic, yet practical table for comparing the
stack and the heap

Stack Heap

Simple Complex

Safe Dangerous*

Fast Slow

Rigid Flexible

* Not in safe Rust!

Figure 6.7 Screenshots from the result of running listing 6.9

196 CHAPTER 6 Memory

std
pr

access
sys

ch

s
of

The following listing shows the dependencies for our toy program (listing 6.9). The
source for the following listing is in ch6/ch6-particles/Cargo.toml. The source for list-
ing 6.9 is in ch6/ch6-particles/main.rs.

[package]
name = "ch6-particles"
version = "0.1.0"
authors = ["TS McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
piston_window = "0.117"

piston2d-graphics = "0.39"

rand = "0.8"

 1 use graphics::math::{Vec2d, add, mul_scalar};
 2
 3 use piston_window::*;
 4
 5 use rand::prelude::*;
 6
 7 use std::alloc::{GlobalAlloc, System, Layout};
 8
 9 use std::time::Instant;
10
11
12 #[global_allocator]
13 static ALLOCATOR: ReportingAllocator = ReportingAllocator;
14
15 struct ReportingAllocator;
16
17 unsafe impl GlobalAlloc for ReportingAllocator {
18 unsafe fn alloc(&self, layout: Layout) -> *mut u8 {
19 let start = Instant::now();
20 let ptr = System.alloc(layout);
21 let end = Instant::now();
22 let time_taken = end - start;
23 let bytes_requested = layout.size();
24
25 eprintln!("{}\t{}", bytes_requested, time_taken.as_nanos());
26 ptr
27 }
28
29 unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) {

Listing 6.8 Build dependencies for listing 6.9

Listing 6.9 A graphical application to create and destroy objects on the heap

Provides a wrapper around the core functionality of
the piston game engine, letting us easily draw things
onscreen; largely irrespective of the host environment

Provides vector mathematics, which
is important to simulate movement

Provides random number generators
and associated functionality

graphics::math::Vec2d provides mathematical operations
and conversion functionality for 2D vectors.

piston_window provides the tools to create
a GUI program and draws shapes to it.

rand provides random number
generators and related functionality.

std::alloc provides
facilities for controlling
memory allocation.

::time
ovides
to the
tem’s
clock.

#[global_allocator] marks the
following value (ALLOCATOR) as
satisfying the GlobalAlloc trait.

Prints the time taken for ea
allocation to STDOUT as the
program runs. This provide
a fairly accurate indication
the time taken for dynamic
memory allocation.

Defers the actual memory
allocation to the system’s
default memory allocator

197Providing programs with memory for their data
30 System.dealloc(ptr, layout);
31 }
32 }
33
34 struct World {
35 current_turn: u64,
36 particles: Vec<Box<Particle>>,
37 height: f64,
38 width: f64,
39 rng: ThreadRng,
40 }
41
42 struct Particle {
43 height: f64,
44 width: f64,
45 position: Vec2d<f64>,
46 velocity: Vec2d<f64>,
47 acceleration: Vec2d<f64>,
48 color: [f32; 4],
49 }
50
51 impl Particle {
52 fn new(world : &World) -> Particle {
53 let mut rng = thread_rng();
54 let x = rng.gen_range(0.0..=world.width);
55 let y = world.height;
56 let x_velocity = 0.0;
57 let y_velocity = rng.gen_range(-2.0..0.0);
58 let x_acceleration = 0.0;
59 let y_acceleration = rng.gen_range(0.0..0.15);
60
61 Particle {
62 height: 4.0,
63 width: 4.0,
64 position: [x, y].into(),
65 velocity: [x_velocity, y_velocity].into(),
66 acceleration: [x_acceleration,
67 y_acceleration].into(),
68 color: [1.0, 1.0, 1.0, 0.99],
69 }
70 }
71
72 fn update(&mut self) {
73 self.velocity = add(self.velocity,
74 self.acceleration);
75 self.position = add(self.position,
76 self.velocity);
77 self.acceleration = mul_scalar(
78 self.acceleration,
79 0.7
80);
81 self.color[3] *= 0.995;
82 }
83 }
84

Contains the data
that is useful for
the lifetime of the
program

Defines an
object in
2D space

Starts at a random position
along the bottom of the window

Rises vertically over time

Increases the speed
of the rise over time

into() converts the
arrays of type [f64; 2]
into Vec2d.

Inserts a fully saturated
white that has a tiny
amount of transparency

Moves the particle
to its next position

Slows down the particle’s
rate of increase as it travels
across the screen

Makes the particle
more transparent
over time

198 CHAPTER 6 Memory

85 impl World {
86 fn new(width: f64, height: f64) -> World {
87 World {
88 current_turn: 0,
89 particles: Vec::<Box<Particle>>::new(),
90 height: height,
91 width: width,
92 rng: thread_rng(),
93 }
94 }
95
96 fn add_shapes(&mut self, n: i32) {
97 for _ in 0..n.abs() {
98 let particle = Particle::new(&self);
99 let boxed_particle = Box::new(particle);
100 self.particles.push(boxed_particle);
101 }
102 }
103
104 fn remove_shapes(&mut self, n: i32) {
105 for _ in 0..n.abs() {
106 let mut to_delete = None;
107
108 let particle_iter = self.particles
109 .iter()
110 .enumerate();
111
112 for (i, particle) in particle_iter {
113 if particle.color[3] < 0.02 {
114 to_delete = Some(i);
115 }
116 break;
117 }
118
119 if let Some(i) = to_delete {
120 self.particles.remove(i);
121 } else {
122 self.particles.remove(0);
123 };
124 }
125 }
126
127 fn update(&mut self) {
128 let n = self.rng.gen_range(-3..=3);
129
130 if n > 0 {
131 self.add_shapes(n);
132 } else {
133 self.remove_shapes(n);
134 }
135
136 self.particles.shrink_to_fit();
137 for shape in &mut self.particles {
138 shape.update();
139 }

Uses Box<Particle> rather
than Particle to incur an extra
memory allocation when
every particle is created

Creates a Particle as a
local variable on the stack

Takes ownership of particle,
moving its data to the heap,
and creates a reference to
that data on the stack

Pushes the reference
into self.shapes

particle_iter is split into
its own variable to more
easily fit on the page.

For n iterations, removes
the first particle that’s
invisible. If there are no
invisible particles, then
removes the oldest.

Returns a random
integer between –3
and 3, inclusive

199Providing programs with memory for their data
140 self.current_turn += 1;
141 }
142 }
143
144 fn main() {
145 let (width, height) = (1280.0, 960.0);
146 let mut window: PistonWindow = WindowSettings::new(
147 "particles", [width, height]
148)
149 .exit_on_esc(true)
150 .build()
151 .expect("Could not create a window.");
152
153 let mut world = World::new(width, height);
154 world.add_shapes(1000);
155
156 while let Some(event) = window.next() {
157 world.update();
158
159 window.draw_2d(&event, |ctx, renderer, _device| {
160 clear([0.15, 0.17, 0.17, 0.9], renderer);
161
162 for s in &mut world.particles {
163 let size = [s.position[0], s.position[1], s.width, s.height];
164 rectangle(s.color, size, ctx.transform, renderer);
165 }
166 });
167 }
168 }

Listing 6.9 is a fairly long code example, but hopefully, it does not contain any code
that’s too alien compared to what you’ve already seen. Toward the end, the code
example introduces Rust’s closure syntax. If you look at the call to window.draw_2d(),
it has a second argument with vertical bars surrounding two variable names (|ctx, ren-
derer, _device| { … }). Those vertical bars provide space for the closure’s arguments,
and the curly braces are its body.

 A closure is a function that is defined in line and can access variables from its sur-
rounding scope. These are often called anonymous or lambda functions.

 Closures are a common feature within idiomatic Rust code, but this book tends to
avoid those where possible to keep examples approachable to programmers from an
imperative or object-oriented background. Closures are explained fully in chapter 11.
In the interim, it’s sufficient to say that these are a convenient shorthand for defining
functions. Let’s next focus on generating some evidence that allocating variables on
the heap (many millions of times) can have a performance impact on your code.

6.3.4 Analyzing the impact of dynamic memory allocation

If you run listing 6.9 from a terminal window, you’ll soon see two columns of numbers
filling it up. These columns represent the number of bytes allocated, and the duration
in nanoseconds taken to fulfil the request. That output can be sent to a file for further

200 CHAPTER 6 Memory
analysis, as shown in the following listing, which redirects stderr from ch6-particles
to a file.

$ cd ch6-particles

$ cargo run -q 2> alloc.tsv

$ head alloc.tsv
4 219
5 83
48 87
9 78
9 93
19 69
15 960
16 40
14 70
16 53

One interesting aspect from this short extract is that memory allocation speed is not
well-correlated with allocation size. When every heap allocation is plotted, this becomes
even clearer as figure 6.8 shows.

Listing 6.10 Creating a report of memory allocations

Runs ch6-particles
in quiet mode

Views the first 10
lines of output

Figure 6.8 Plotting heap allocation times against allocation size shows that there is no clear
relationship between the two. The time taken to allocate memory is essentially unpredictable,
even when requesting the same amount of memory multiple times.

10

100

1000

10000

1 4 16 64 256 1024 4096 16384 65536

A
llo

c
a
ti
o
n
 d

u
ra

ti
o
n
 (

n
s
)

Allocation size (bytes)

201Providing programs with memory for their data
To generate your own version of figure 6.8, the following listing shows a gnuplot script
that can be tweaked as desired. You’ll find this source in the file ch6/alloc.plot.

set key off
set rmargin 5
set grid ytics noxtics nocbtics back
set border 3 back lw 2 lc rgbcolor "#222222"

set xlabel "Allocation size (bytes)"
set logscale x 2
set xtics nomirror out
set xrange [0 to 100000]

set ylabel "Allocation duration (ns)"
set logscale y
set yrange [10 to 10000]
set ytics nomirror out

plot "alloc.tsv" with points \
 pointtype 6 \
 pointsize 1.25 \
 linecolor rgbcolor "#22dd3131"

Although larger memory allocations do tend to take longer than shorter ones, it’s not
guaranteed. The range of durations for allocating memory of the same number is
over an order of magnitude. It might take 100 nanoseconds; it might take 1,000.

 Does it matter? Probably not. But it might. If you have a 3 GHz CPU, then your
processor is capable of performing 3 billion operations per second. If there is a 100
nanosecond delay between each of those operations, your computer can only perform
30 million operations in the same time frame. Perhaps those hundreds of microsec-
onds really do count for your application. Some general strategies for minimizing
heap allocations include

 Using arrays of uninitialized objects. Instead of creating objects from scratch as
required, create a bulk lot of those with zeroed values. When the time comes to
activate one of those objects, set its values to non-zero. This can be a very dan-
gerous strategy because you’re circumventing Rust’s lifetime checks.

 Using an allocator that is tuned for your application’s access memory profile. Memory
allocators are often sensitive to the sizes where these perform best.

 Investigate arena::Arena and arena::TypedArena. These allow objects to be cre-
ated on the fly, but alloc() and free() are only called when the arena is cre-
ated and destroyed.

Listing 6.11 Script used to generate figure 6.8 with gnuplot

202 CHAPTER 6 Memory
6.4 Virtual memory
This section explains what the term virtual memory means and why it exists. You will
be able to use this knowledge to speed up your programs by building software that
goes with the grain. CPUs can compute faster when they’re able to access memory
quickly. Understanding some of the dynamics of the computer architecture can help
to provide CPUs with memory efficiently.

6.4.1 Background

I have spent far too much of my life playing computer games. As enjoyable and chal-
lenging as I’ve found these, I’ve often wondered about whether I would have been
better off spending my teenage years doing something more productive. Still, it’s left
me with plenty of memories. But some of those memories still leave a bitter taste.

 Occasionally, someone would enter the game and obliterate everyone with near
perfect aim and seemingly impossibly high health ratings. Other players would decry,
“Cheater!” but were more or less helpless in defeat. While waiting in in-game purga-
tory, I would sit wondering, “How is that possible? How are those tweaks to the game
actually made?”

 By working through this section’s examples, you would have built the core of a tool
that’s capable of inspecting and modifying values of a running program.

Terms related to virtual memory
Terminology within this area is particularly arcane. It is often tied to decisions made
many decades ago when the earliest computers were being designed. Here is a quick
reference to some of the most important terms:

 Page—A fixed-size block of words of real memory. Typically 4 KB in size for
64-bit operating systems.

 Word—Any type that is size of a pointer. This corresponds to the width of the
CPU’s registers. In Rust, usize and isize are word-length types.

 Page fault—An error raised by the CPU when a valid memory address is
requested that is not currently in physical RAM. This signals to the OS that at
least one page must be swapped back into memory.

 Swapping—Migrating a page of memory stored temporarily on disk from main
memory upon request.

 Virtual memory—The program’s view of its memory. All data accessible to a
program is provided in its address space by the OS.

 Real memory—The operating system’s view of the physical memory available
on the system. In many technical texts, real memory is defined independently
from physical memory, which becomes much more of an electrical engineer-
ing term.

 Page table—The data structure maintained by the OS to manage translating
from virtual to real memory.

203Virtual memory
6.4.2 Step 1: Having a process scan its own memory

Intuitively, a program’s memory is a series of bytes that starts at location 0 and ends at
location n. If a program reports 100 KB of RAM usage, it would seem that n would be
somewhere near 100,000. Let’s test that intuition.

 We’ll create a small command-line program that looks through memory, start-
ing at location 0 and ending at 10,000. As it’s a small program, it shouldn’t occupy
more than 10,000 bytes. But when executed, the program will not perform as
intended. Sadly, it will crash. You’ll learn why the crash occurs as you follow through
this section.

 Listing 6.12 shows the command-line program. You can find its source in ch6/ch6-
memscan-1/src/main.rs. The listing scans through a running program’s memory byte
by byte, starting at 0. It introduces the syntax for creating raw pointers and derefer-
encing (reading) those.

 1 fn main() {
 2 let mut n_nonzero = 0;
 3
 4 for i in 0..10000 {
 5 let ptr = i as *const u8;
 6 let byte_at_addr = unsafe { *ptr };
 7
 8 if byte_at_addr != 0 {
 9 n_nonzero += 1;
10 }
11 }
12
13 println!("non-zero bytes in memory: {}", n_nonzero);
14 }

 Segment—A block within virtual memory. Virtual memory is divided into blocks
to minimize the space required to translate between virtual and physical
addresses.

 Segmentation fault—An error raised by the CPU when an illegal memory address
is requested.

 MMU—A component of the CPU that manages memory address translation.
Maintains a cache of recently translated addresses (called the TLB), which
stands for the translation lookaside buffer, although that terminology has fallen
from fashion.

One term that has not been defined in any technical sense so far in this book is
process. If you’ve encountered it before and have been wondering why it has been
omitted, it will be introduced properly when we talk about concurrency. For now, con-
sider the terms process and its peer operating system process to refer to a running
program.

Listing 6.12 Attempting to scan a running program’s memory byte by byte

Converts i to a *const T, a raw pointer
of type u8 to inspect raw memory
addresses. We treat every address as
a unit, ignoring the fact that most
values span multiple bytes.

Dereferences the pointer, it
reads the value at address i.
Another way of saying this
is “read the value being
pointed to.”

204 CHAPTER 6 Memory
Listing 6.12 crashes because it is attempting to dereference a NULL pointer. When i
equals 0, ptr can’t really be dereferenced. Incidentally, this is why all raw pointer
dereferences must occur within an unsafe block.

 How about we attempt to start from a non-zero memory address? Given that the
program is executable code, there should be at least several thousand bytes of non-
zero data to iterate through. The following listing scans the process’s memory starting
from 1 to avoid dereferencing a NULL pointer.

 1 fn main() {
 2 let mut n_nonzero = 0;
 3
 4 for i in 1..10000 {
 5 let ptr = i as *const u8;
 6 let byte_at_addr = unsafe { *ptr };
 7
 8 if byte_at_addr != 0 {
 9 n_nonzero += 1;
10 }
11 }
12
13 println!("non-zero bytes in memory: {}", n_nonzero);
14 }

This unfortunately does not completely solve the issue. Listing 6.13 still crashes upon
execution, and the number of non-zero bytes is never printed to the console. This is
due to what’s known as a segmentation fault.

 Segmentation faults are generated when the CPU and OS detect that your pro-
gram is attempting to access memory regions that they aren’t entitled to. Memory
regions are divided into segments. That explains the name.

 Let’s try a different approach. Rather than attempting to scan through bytes, let’s
look for the addresses of things that we know exist. We’ve spent lots of time learning
about pointers, so let’s put that to use. Listing 6.14 creates several values, examining
their addresses.

 Every run of listing 6.14 may generate unique values. Here is the output of one run:

GLOBAL: 0x7ff6d6ec9310
local_str: 0x7ff6d6ec9314
local_int: 0x23d492f91c
boxed_int: 0x18361b78320
boxed_str: 0x18361b78070
fn_int: 0x23d492f8ec

As you can see, values appear to be scattered across a wide range. So despite your pro-
gram (hopefully) only needing a few kilobytes of RAM, a few variables live in giant
locations. These are virtual addresses.

Listing 6.13 Scanning a process’s memory

Starts at 1 rather
than 0 to avoid a NULL
pointer exception

205Virtual memory
 As explained in the heap versus stack section, the stack starts at the top of the
address space and the heap starts near the bottom. In this run, the highest value is
0x7ff6d6ec9314. That’s approximately 264 ÷ 2. That number is due to the OS reserv-
ing half of the address space for itself.

 The following listing returns the address of several variables within a program to
examine its address space. The source for this listing in ch6/ch6-memscan-3/src/
main.rs.

static GLOBAL: i32 = 1000;

fn noop() -> *const i32 {
 let noop_local = 12345;
 &noop_local as *const i32
}

fn main() {
 let local_str = "a";
 let local_int = 123;
 let boxed_str = Box::new('b');
 let boxed_int = Box::new(789);
 let fn_int = noop();

 println!("GLOBAL: {:p}", &GLOBAL as *const i32);
 println!("local_str: {:p}", local_str as *const str);
 println!("local_int: {:p}", &local_int as *const i32);
 println!("boxed_int: {:p}", Box::into_raw(boxed_int));
 println!("boxed_str: {:p}", Box::into_raw(boxed_str));
 println!("fn_int: {:p}", fn_int);}

By now, you should be pretty good at accessing addresses of stored values. There are
actually two small lessons that you may have also picked up on:

 Some memory addresses are illegal. The OS will shut your program down if it attempts
to access memory that is out of bounds.

 Memory addresses are not arbitrary. Although values seem to be spread quite far
apart within the address space, values are clustered together within pockets.

Before pressing on with the cheat program, let’s step back and look at the system
that’s operating behind the scenes to translate these virtual addresses to real memory.

6.4.3 Translating virtual addresses to physical addresses

Accessing data in a program requires virtual addresses—the only addresses that the
program itself has access to. These get translated into physical addresses. This process
involves a dance between the program, the OS, the CPU, the RAM hardware, and
occasionally hard drives and other devices. The CPU is responsible for performing
this translation, but the OS stores the instructions.

Listing 6.14 Printing the address of variables within a program

Creates a global static, which is a
global variable in Rust programs

Creates a global static, which is a
global variable in Rust programs

Creates a local variable within noop() so that
something outside of main() has a memory address

Creates various values of
several types including
values on the heap

206 CHAPTER 6 Memory
 CPUs contain a memory management unit (MMU) that is designed for this one job.
For every running program, every virtual address is mapped to a physical address.
Those instructions are stored at a predefined address in memory as well. That means,
in the worst case, every attempt at accessing memory addresses incurs two memory
lookups. But it’s possible to avoid the worst case.

 The CPU maintains a cache of recently translated addresses. It has its own (fast)
memory to speed up accessing memory. For historic reasons, this cache is known as
the translation lookaside buffer, often abbreviated as TLB. Programmers optimizing for
performance need to keep data structures lean and avoid deeply nested structures.
Reaching the capacity of the TLB (typically around 100 pages for x86 processors) can
be costly.

 Looking into how the translation system operates reveals more, often quite com-
plex, details. Virtual addresses are grouped into blocks called pages, which are typically
4 KB in size. This practice avoids the need to store a translation mapping for every
single variable in every program. Having a uniform size for each page also assists in
avoiding a phenomenon known as memory fragmentation, where pockets of empty, yet
unusable, space appear within available RAM.

NOTE This is a general guide only. The details of how the OS and CPU coop-
erate to manage memory differs significantly in some environments. In par-
ticular, constrained environments such as microcontrollers can use real
addressing. For those interested in learning more, the research field is known
as computer architecture.

The OS and CPU can play some interesting tricks when data lives within pages of vir-
tual memory. For example

 Having a virtual address space allows the OS to overallocate. Programs that ask
for more memory than the machine can physically provide are able to be
accommodated.

 Inactive memory pages can be swapped to disk in a byte-for-byte manner until it’s
requested by the active program. Swapping is often used during periods of high
contention for memory but can be used more generally, depending on an
operating system’s whims.

 Other size optimizations such as compression can be performed. A program sees its
memory intact. Behind the scenes, the OS compresses the program’s wasteful
data usage.

 Programs are able to share data quickly. If your program requests a large block of
zeroes, say, for a newly created array, the OS might point you towards a page
filled with zeroes that is currently being used by three other programs. None of
the programs are aware that the others are looking at the same physical mem-
ory, and the zeroes have different positions within their virtual address space.

207Virtual memory
 Paging can speed up the loading of shared libraries. As a special case of the previ-
ous point, if a shared library is already loaded by another program, the OS
can avoid loading it into memory twice by pointing the new program to the
old data.

 Paging adds security between programs. As you discovered earlier in this section,
some parts of the address space are illegal to access. The OS has other attributes
that it can add. If an attempt is made to write to a read-only page, the OS termi-
nates the program.

Making effective use of the virtual memory system in day-to-day programs requires
thinking about how data is represented in RAM. Here are some guidelines:

 Keep hot working portions of your program within 4 KB of size. This maintains fast
lookups.

 If 4 KB is unreasonable for your application, then the next target to keep under is 4 KB *
100. That rough guide should mean that the CPU can maintain its translation
cache (the TLB) in good order to support your program.

 Avoid deeply nested data structures with pointer spaghetti. If a pointer points to
another page, then performance suffers.

 Test the ordering of your nested loops. CPUs read small blocks of bytes, known as a
cache line, from the RAM hardware. When processing an array, you can take
advantage of this by investigating whether you are doing column-wise or row-
wise operations.

One thing to note: virtualization makes this situation worse. If you’re running an app
inside a virtual machine, the hypervisor must also translate addresses for its guest
operating systems. This is why many CPUs ship with virtualization support, which can
reduce this extra overhead. Running containers within virtual machines adds another
layer of indirection and, therefore, latency. For bare-metal performance, run apps on
bare metal.

How does an executable file turn into a program’s virtual address space?
The layout of executable files (aka binaries) has many similarities to the address
space diagram that we saw earlier in the heap versus stack section of the chapter.

While the exact process is dependent on the OS and file format, the following figure
shows a representative example. Each of the segments of the address space that we
have discussed are described by binary files. When the executable is started, the OS
loads the right bytes into the right places. Once the virtual address space is created,
the CPU can be told to jump to the start of the .text segment, and the program begins
executing.

208 CHAPTER 6 Memory
6.4.4 Step 2: Working with the OS to scan an address space

Our task is to scan our program’s memory while it’s running. As we’ve discovered, the
OS maintains the instructions for mapping between a virtual address and a physical
address. Can we ask the OS to tell us what is happening?

 Operating systems provide an interface for programs to be able to make requests;
this is known as a system call. Within Windows, the KERNEL.DLL provides the neces-
sary functionality to inspect and manipulate the memory of a running process.

NOTE Why Windows? Well, many Rust programmers use MS Windows as a
platform. Also, its functions are well named and don’t require as much prior
knowledge as the POSIX API.

When you run listing 6.16, you should see lots of output with many sections. This may
be similar to the following:

MEMORY_BASIC_INFORMATION {
 BaseAddress: 0x00007ffbe8d9b000,

(continued)

File header:

describes the file type

Program header:

describes the memory

segments used by the program

and their attributes

Common segments:

.bss

Historic name originally stood for;

Block Started by Symbol. Location

for uninitialized static variables. Takes

up little space in the file, typically

only a length of needed bytes.

.rodata

Stands for read-only data. Location

for initialized immutable values with a

static lifetime, such as string literals

(static T).

.data

Location for initialized mutable

global variables with a static

lifetime (static mut T).

.text

Location for executable code

Executable file (ELF)

Linker metadata:

symbol names and other data

Virtual address space

Kernel address space:

inaccessible to the

program

The stack:

writeable by the program

Environment variables and

command-line arguments:

read-only to the program

The heap:

writeable by the program

.bss

.rodata

.data

.text

Black and very dark gray blocks are
inaccessible from inside the program.

.text

.data
.rodata

.bss

This struct is defined
within the Windows API.

209Virtual memory

u
usiz

m

A poi
SYSTE
 AllocationBase: 0x0000000000000000,
 AllocationProtect: 0,
 RegionSize: 17568124928,
 State: 65536,
 Protect: 1,
 Type: 0
}
MEMORY_BASIC_INFORMATION {
 BaseAddress: 0x00007ffffffe0000,
 AllocationBase: 0x00007ffffffe0000,
 AllocationProtect: 2,
 RegionSize: 65536,
 State: 8192,
 Protect: 1,
 Type: 131072

The following listing shows the dependencies for listing 6.16. You can find its source
in ch6/ch6-meminfo-win/Cargo.toml.

[package]
name = "meminfo"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
winapi = "0.2" #
kernel32-sys = "0.2" #

The following listing shows how to inspect memory via the Windows API. The source
code for this listing is in ch6/ch6-meminfo-win/src/main.rs.

use kernel32;
use winapi;

use winapi::{
 DWORD,
 HANDLE,
 LPVOID,
 PVOID,
 SIZE_T,
 LPSYSTEM_INFO,
 SYSTEM_INFO,
 MEMORY_BASIC_INFORMATION as MEMINFO,
};

Listing 6.15 Dependencies for listing 6.16

Listing 6.16 Inspecting a program’s memory

These fields are the integer representations
of enums defined in the Windows API. It’s
possible to decode these to the enum
variant names, but this isn’t available
without adding extra code to the listing.

Defines some useful
type aliases

Provides interaction
with KERNEL.DLL from
the Windows API

In Rust,
this would
be a u32.

Pointer types for various internal APIs
without an associated type. In Rust,
std::os::raw::c_void defines void pointers;
a HANDLE is a pointer to some opaque
resource within Windows.

In Windows, data type names are often prefixed
with a shorthand for their type. P stands for
pointer; LP stands for long pointer (e.g., 64 bit).

64 is the
e on this

achine.

nter to a
M_INFO

struct
Some structs defined by
Windows internally

210 CHAPTER 6 Memory

Rath
retu

fun
use of

prov
to th
prov

to som
stru
that

val
functio

se
fn main() {
 let this_pid: DWORD;
 let this_proc: HANDLE;
 let min_addr: LPVOID;
 let max_addr: LPVOID;
 let mut base_addr: PVOID;
 let mut proc_info: SYSTEM_INFO;
 let mut mem_info: MEMORY_BASIC_INFORMATION;

 const MEMINFO_SIZE: usize = std::mem::size_of::<MEMINFO>();

 unsafe {
 base_addr = std::mem::zeroed();
 proc_info = std::mem::zeroed();
 mem_info = std::mem::zeroed();
 }

 unsafe {
 this_pid = kernel32::GetCurrentProcessId();
 this_proc = kernel32::GetCurrentProcess();
 kernel32::GetSystemInfo(
 &mut proc_info as LPSYSTEM_INFO
);
 };

 min_addr = proc_info.lpMinimumApplicationAddress;
 max_addr = proc_info.lpMaximumApplicationAddress;

 println!("{:?} @ {:p}", this_pid, this_proc);
 println!("{:?}", proc_info);
 println!("min: {:p}, max: {:p}", min_addr, max_addr);

 loop {
 let rc: SIZE_T = unsafe {
 kernel32::VirtualQueryEx(
 this_proc, base_addr,
 &mut mem_info, MEMINFO_SIZE as SIZE_T)
 };

 if rc == 0 {
 break
 }

 println!("{:#?}", mem_info);
 base_addr = ((base_addr as u64) + mem_info.RegionSize) as PVOID;
 }
}

Finally, we have been able to explore an address space without the OS killing our pro-
gram. Now the question remains: How do we inspect individual variables and modify
those?

Initializes these variables
from within unsafe blocks.
To make these accessible in
the outer scope, these need
to be defined here.

This block guarantees that
all memory is initialized.

This block of code is where
system calls are made.

er than use a
rn value, this
ction makes

 a C idiom to
ide its result
e caller. We

ide a pointer
e predefined
ct, then read
 struct’s new
ues once the
n returns to

e the results.
Renaming these variables
for convenience

This loop does the work
of scanning through the
address space.

Provides
information about
a specific segment

of the running
program’s

memory address
space, starting

at base_addr

211Summary
6.4.5 Step 3: Reading from and writing to process memory

Operating systems provide tools to read and write memory, even in other programs.
This is essential for Just-In-Time compilers (JITs), debuggers, and programs to help
people “cheat” at games. On Windows, the general process looks something like this
in Rust-like pseudocode:

let pid = some_process_id;
OpenProcess(pid);

loop address space {
 call VirtualQueryEx() to access the next memory segment

 scan the segment by calling ReadProcessMemory(),
 looking for a selected pattern

 call WriteProcessMemory() with the desired value
}

Linux provides an even simpler API via process_vm_readv() and process_vm_ writev().
These are analogous to ReadProcessMemory() and WriteProcessMemory() in Windows.

 Memory management is a complicated area with many levels of abstraction to
uncover. This chapter has tried to focus on those elements that are most salient to
your work as a programmer. Now, when you read your next blog post on some low-
level coding technique, you should be able to follow along with the terminology.

Summary
 Pointers, references, and memory addresses are identical from the CPU’s per-

spective, but these are significantly different at the programming language
level.

 Strings and many other data structures are implemented with a backing array
pointed to by a pointer.

 The term smart pointer refers to data structures that behave like pointers but
have additional capabilities. These almost always incur a space overhead. Addi-
tionally, data can include integer length and capacity fields or things that are
more sophisticated, such as locks.

 Rust has a rich collection of smart pointer types. Types with more features typi-
cally incur greater runtime costs.

 The standard library’s smart pointer types are built from building blocks that
you can also use to define your own smart pointers if required.

 The heap and the stack are abstractions provided by operating systems and pro-
gramming languages. These do not exist at the level of the CPU.

 Operating systems often provide mechanisms such as memory allocations to
inspect a program’s behavior.

Files and storage
Storing data permanently on digital media is trickier than it looks. This chapter
takes you though some of the details. To transfer information held by ephemeral
electrical charges in RAM to (semi)permanent storage media and then be able to
retrieve it again later takes several layers of software indirection.

 The chapter introduces some new concepts such as how to structure projects
into library crates for Rust developers. This task is needed because one of the proj-
ects is ambitious. By the end of the chapter, you’ll have built a working key-value store
that’s guaranteed to be durable to hardware failure at any stage. During the chapter,
we’ll work through a small number of side quests. For example, we implement parity

This chapter covers
 Learning how data is represented on physical

storage devices

 Writing data structures to your preferred file
format

 Building a tool to read from a file and inspect
its contents

 Creating a working key-value store that’s
immune from corruption
212

213What is a file format?
bit checking and explore what it means to hash a value. To start with, however, let’s see if
we can create patterns from the raw byte sequence within files.

7.1 What is a file format?
File formats are standards for working with data as an single, ordered sequence of
bytes. Storage media like hard disk drives work faster when reading or writing large
blocks of data in serial. This contrasts with in-memory data structures, where data lay-
out has less of an impact.

 File formats live in a large design space with trade-offs in performance, human-
readability, and portability. Some formats are highly portable and self-describing. Oth-
ers restrict themselves to being accessible within a single environment and are unable
to be read by third-party tools, yet they are high performance.

 Table 7.1 illustrates some of the design space for file formats. Each row reveals the
file format’s internal patterns, which are generated from the same source text. By
color-coding each byte within the file, it’s possible to see structural differences
between each representation.

Table 7.1 The internals of four digital versions of William Shakespeare’s Much Ado About Nothing
produced by Project Gutenberg.

The plain text version of the play contains printable char-
acters only. These are indicated by dark grey for letters
and punctuation, and white for whitespace.
Visually, the image appears to be noisy. It lacks internal
structure. That’s due to the variation in length of the natu-
ral language that the file represents. A file with regular,
repeating structures, such as a file format designed to
hold arrays of floating-point numbers, tends to look quite
different.

The EPUB format is actually a compressed ZIP archive
with a bespoke file extension. There are many bytes
within the file that fall out of the range of the printable
category as indicated by the mid-grey pixels.

MOBI includes four bands of NULL bytes (0x00), repre-
sented as black pixels. These bands probably represent
the result of an engineering trade-off. In some sense,
these empty bytes are wasted space. They’re probably
added as padding so that the file’s sections are easy to
parse later on.
The other notable feature of this file is its size. It’s larger
than the other versions of the play. This might imply that
the file is harboring more data than just the text. Candi-
dates include display elements like fonts, or encryption
keys that enforce anti-copying restrictions within the file.

214 CHAPTER 7 Files and storage
7.2 Creating your own file formats for data storage
When working with data that needs to be stored over a long time, the proper thing to
do is to use a battle-tested database. Despite this, many systems use plain text files for
data storage. Configuration files, for example, are commonly designed to be both
human-readable and machine-readable. The Rust ecosystem has excellent support for
converting data to many on-disk formats.

7.2.1 Writing data to disk with serde and the bincode format

The serde crate serializes and deserializes Rust values to and from many formats. Each
format has its own strengths: many are human-readable, while others prefer to be
compact so that they can be speedily sent across the network.

 Using serde takes surprisingly little ceremony. As an example, let’s use statistics about
the Nigerian city of Calabar and store those in multiple output formats. To start, let’s
assume that our code contains a City struct. The serde crate provides the Serialize and
Deserialize traits, and most code implements these with this derived annotation:

#[derive(Serialize)]
struct City {
 name: String,
 population: usize,
 latitude: f64,
 longitude: f64,
}

Populating that struct with data about Calabar is straightforward. This code snippet
shows the implementation:

let calabar = City {
 name: String::from("Calabar"),
 population: 470_000,
 latitude: 4.95,
 longitude: 8.33,
};

The HTML file contains a high proportion of whitespace
characters. These are indicated by white pixels. Markup
languages like HTML tend to add whitespace to aid read-
ability.

Table 7.1 The internals of four digital versions of William Shakespeare’s Much Ado About Nothing
produced by Project Gutenberg. (continued)

Provides the tooling
to enable external
formats to interact
with Rust code

215Creating your own file formats for data storage
Now to convert that calabar variable to JSON-encoded String. Performing the con-
version is one line of code:

let as_json = to_json(&calabar).unwrap();

serde understands many more formats than JSON. The code in listing 7.2 (shown
later in this section) also provides similar examples for two lesser-known formats:
CBOR and bincode. CBOR and bincode are more compact than JSON but at the
expense of being machine-readable only.

 The following shows the output, formatted for the page, that’s produced by listing
7.2. It provides a view of the bytes of the calabar variable in several encodings:

$ cargo run
 Compiling ch7-serde-eg v0.1.0 (/rust-in-action/code/ch7/ch7-serde-eg)
 Finished dev [unoptimized + debuginfo] target(s) in 0.27s
 Running `target/debug/ch7-serde-eg`
json:
{"name":"Calabar","population":470000,"latitude":4.95,"longitude":8.33}

cbor:
[164, 100, 110, 97, 109, 101, 103, 67, 97, 108, 97, 98, 97, 114, 106,
112, 111, 112, 117, 108, 97, 116, 105, 111, 110, 26, 0, 7, 43, 240, 104,
108, 97, 116, 105, 116, 117, 100, 101, 251, 64, 19, 204, 204, 204, 204,
204, 205, 105, 108, 111, 110, 103, 105, 116, 117, 100, 101, 251, 64, 32,
168, 245, 194, 143, 92, 41]

bincode:
[7, 0, 0, 0, 0, 0, 0, 0, 67, 97, 108, 97, 98, 97, 114, 240, 43, 7, 0, 0,
0, 0, 0, 205, 204, 204, 204, 204, 204, 19, 64, 41, 92, 143, 194, 245, 168,
32, 64]

json (as UTF-8):
{"name":"Calabar","population":470000,"latitude":4.95,"longitude":8.33}

cbor (as UTF-8):
�dnamegCalabarjpopulation+�hlatitude�@������ilongitude�@ ��\)

bincode (as UTF-8):
Calabar�+������@)\���� @

To download the project, enter these commands in the console:

$ git clone https://github.com/rust-in-action/code rust-in-action
$ cd rust-in-action/ch7/ch7-serde-eg

To create the project manually, create a directory structure that resembles the follow-
ing snippet and populate its contents with the code in listings 7.1 and 7.2 from the
ch7/ch7-serde-eg directory:

ch7-serde-eg
├── src

216 CHAPTER 7 Files and storage
│
└── main.rs
└── Cargo.toml

[package]
name = "ch7-serde-eg"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
bincode = "1"
serde = "1"
serde_cbor = "0.8"
serde_derive = "1"
serde_json = "1"

 1 use bincode::serialize as to_bincode;
 2 use serde_cbor::to_vec as to_cbor;
 3 use serde_json::to_string as to_json;
 4 use serde_derive::{Serialize};
 5
 6 #[derive(Serialize)]
 7 struct City {
 8 name: String,
 9 population: usize,
10 latitude: f64,
11 longitude: f64,
12 }
13
14 fn main() {
15 let calabar = City {
16 name: String::from("Calabar"),
17 population: 470_000,
18 latitude: 4.95,
19 longitude: 8.33,
20 };
21
22 let as_json = to_json(&calabar).unwrap();
23 let as_cbor = to_cbor(&calabar).unwrap();
24 let as_bincode = to_bincode(&calabar).unwrap();
25
26 println!("json:\n{}\n", &as_json);
27 println!("cbor:\n{:?}\n", &as_cbor);
28 println!("bincode:\n{:?}\n", &as_bincode);
29 println!("json (as UTF-8):\n{}\n",
30 String::from_utf8_lossy(as_json.as_bytes())
31);
32 println!("cbor (as UTF-8):\n{:?}\n",
33 String::from_utf8_lossy(&as_cbor)

Listing 7.1 Declaring dependencies and setting metadata for listing 7.2

Listing 7.2 Serialize a Rust struct to multiple formats

See listing 7.2.

See listing 7.1.

These functions are
renamed to shorten
lines where used.

Instructs the serde_derive
crate to write the necessary
code to carry out the
conversion from an in-memory
City to on-disk City

Serializes
into different
formats

217Implementing a hexdump clone

s
ct.
34);
35 println!("bincode (as UTF-8):\n{:?}\n",
36 String::from_utf8_lossy(&as_bincode)
37);
38 }

7.3 Implementing a hexdump clone
A handy utility for inspecting a file’s contents is hexdump, which takes a stream of
bytes, often from a file, and then outputs those bytes in pairs of hexadecimal numbers.
Table 7.2 provides an example. As you know from previous chapters, two hexadecimal
numbers can represent all digits from 0 to 255, which is the number of bit patterns
representable within a single byte. We’ll call our clone fview (short for file view).

Unless you’re familiar with hexadecimal notation, the output from fview can be fairly
opaque. If you’re experienced at looking at similar output, you may notice that there
are no bytes above 0x7e (127). There are also few bytes less than 0x21 (33), with the
exception of 0x0a (10). Ox0a represents the newline character (\n). These byte pat-
terns are markers for a plain text input source.

 Listing 7.4 provides the source code that builds the complete fview. But because a
few new features of Rust need to be introduced, we’ll take a few steps to get to the full
program.

 We’ll start with listing 7.3, which uses a string literal as input and produces the out-
put in table 7.2. It demonstrates the use of multiline string literals, importing the
std::io traits via std::io::prelude. This enables &[u8] types to be read as files via
the std::io::Read trait. The source for this listing is in ch7/ch7-fview-str/src/main.rs.

 1 use std::io::prelude::*;
 2
 3 const BYTES_PER_LINE: usize = 16;
 4 const INPUT: &'static [u8] = br#"
 5 fn main() {
 6 println!("Hello, world!");
 7 }"#;
 8
 9 fn main() -> std::io::Result<()> {

Table 7.2 fview in operation

fview input fn main() {
println!("Hello, world!");
}

fview output [0x00000000] 0a 66 6e 20 6d 61 69 6e 28 29 20 7b 0a 20 20 20
[0x00000010] 20 70 72 69 6e 74 6c 6e 21 28 22 48 65 6c 6c 6f
[0x00000020] 2c 20 77 6f 72 6c 64 21 22 29 3b 0a 7d

Listing 7.3 A hexdump clone with hard-coded input that mocks file I/O

prelude imports heavily used traits such as
Read and Write in I/O operations. It’s possible
to include the traits manually, but they’re so
common that the standard library provides thi
convenience line to help keep your code compa

Multiline string literals don’t need double quotes
escaped when built with raw string literals (the
r prefix and the # delimiters). The additional b
prefix indicates that this should be treated as
bytes (&[u8]) not as UTF-8 text (&str).

218 CHAPTER 7 Files and storage
10 let mut buffer: Vec<u8> = vec!();
11 INPUT.read_to_end(&mut buffer)?;
12
13 let mut position_in_input = 0;
14 for line in buffer.chunks(BYTES_PER_LINE) {
15 print!("[0x{:08x}] ", position_in_input);
16 for byte in line {
17 print!("{:02x} ", byte);
18 }
19 println!();
20 position_in_input += BYTES_PER_LINE;
21 }
22
23 Ok(())
24 }

Now that we have seen the intended operation of fview, let’s extend its capabilities to
read real files. The following listing provides a basic hexdump clone that demonstrates
how to open a file in Rust and iterate through its contents. You’ll find this source in
ch7/ch7-fview/src/main.rs.

 1 use std::fs::File;
 2 use std::io::prelude::*;
 3 use std::env;
 4
 5 const BYTES_PER_LINE: usize = 16;
 6
 7 fn main() {
 8 let arg1 = env::args().nth(1);
 9
10 let fname = arg1.expect("usage: fview FILENAME");
11
12 let mut f = File::open(&fname).expect("Unable to open file.");
13 let mut pos = 0;
14 let mut buffer = [0; BYTES_PER_LINE];
15
16 while let Ok(_) = f.read_exact(&mut buffer) {
17 print!("[0x{:08x}] ", pos);
18 for byte in &buffer {
19 match *byte {
20 0x00 => print!(". "),
21 0xff => print!("## "),
22 _ => print!("{:02x} ", byte),
23 }
24 }
25
26 println!("");
27 pos += BYTES_PER_LINE;
28 }
29 }

Listing 7.4 Opening a file in Rust and iterating through its contents

Makes space for the
program’s input with
an internal buffer

Reads our input and
inserts it into our
internal buffer

Writes the current
position with up to 8
left-padded zeros

Shortcut for printing
a newline to stdout

Changing this constant
changes the program’s
output.

219File operations in Rust
Listing 7.4 introduces some new Rust. Let’s look at some of those constructs now:

 while let Ok(_) { … }— With this control-flow structure, the program con-
tinues to loop until f.read_exact() returns Err, which occurs when it has run
out of bytes to read.

 f.read_exact()—This method from the Read trait transfers data from the
source (in our case, f) to the buffer provided as an argument. It stops when
that buffer is full.

f.read_exact() provides greater control to you as a programmer for managing
memory than the chunks() option used in listing 7.3, but it comes with some quirks.
If the buffer is longer than the number of available bytes to read, the file returns an
error, and the state of the buffer is undefined. Listing 7.4 also includes some stylistic
additions:

 To handle command-line arguments without using third-party libraries, we make use of
std::env::args(). It returns an iterator over the arguments provided to the
program. Iterators have an nth() method, which extracts the element at the
nth position.

 Every iterator’s nth() method returns an Option. When n is larger than the length
of the iterator, None is returned. To handle these Option values, we use calls to
expect().

 The expect() method is considered a friendlier version of unwrap(). expect() takes
an error message as an argument, whereas unwrap() simply panics abruptly.

Using std::env::args() directly means that input is not validated. That’s a problem
in our simple example, but is something to consider for larger programs.

7.4 File operations in Rust
So far in this chapter, we have invested a lot of time considering how data is translated
into sequences of bytes. Let’s spend some time considering another level of abstrac-
tion—the file. Previous chapters have covered basic operations like opening and read-
ing from a file. This section contains some other helpful techniques, which provide
more granular control.

7.4.1 Opening a file in Rust and controlling its file mode

Files are an abstraction that’s maintained by the operating system (OS). It presents a
façade of names and hierarchy above a nest of raw bytes.

 Files also provide a layer of security. These have attached permissions that the OS
enforces. This (in principle, at least) is what prevents a web server running under its
own user account from reading files owned by others.

 std::fs::File is the primary type for interacting with the filesystem. There are
two methods available for creating a file: open() and create(). Use open() when you
know the file already exists. Table 7.3 explains more of their differences.

220 CHAPTER 7 Files and storage
When you require more control, std::fs::OpenOptions is available. It provides the
necessary knobs to turn for any intended application. Listing 7.16 provides a good
example of a case where an append mode is requested. The application requires a
writeable file that is also readable, and if it doesn’t already exist, it’s created. The fol-
lowing shows an excerpt from listing 7.16 that demonstrates the use of std::fs:Open-
Options to create a writeable file. The file is not truncated when it’s opened.

let f = OpenOptions::new()

 .read(true)
 .write(true)
 .create(true)

 .append(true)
 .open(path)?;

7.4.2 Interacting with the filesystem in a type-safe manner with
std::fs::Path

Rust provides type-safe variants of str and String in its standard library: std::path::
Path and std::path::PathBuf. You can use these variants to unambiguously work
with path separators in a cross-platform way. Path can address files, directories, and
related abstractions, such as symbolic links. Path and PathBuf values often start their
lives as plain string types, which can be converted with the from() static method:

let hello = PathBuf::from("/tmp/hello.txt")

From there, interacting with these variants reveals methods that are specific to paths:

hello.extension()

Table 7.3 Creating File values in Rust and the effects on the underlying filesystem

Method
Return value when the

file already exists
Effect on the
underlying file

Return value when
no file exists

File::open Ok(File)* Opened as is in read-only mode. Err

File::create Ok(File)* All existing bytes are truncated, and
the file is opened at the beginning
of the new file.

Ok(File)*

* Assuming the user account has sufficient permission.

Listing 7.5 Using std::fs:OpenOptions to create a writeable file

An example of the Builder pattern where
each method returns a new instance of the

OpenOptions struct with the relevant option set
Opens the file
for reading

Enables writing. This line
isn’t strictly necessary;
it’s implied by append.

Creates a file at path if
it doesn’t already exist

Doesn’t delete content that’s
already written to diskOpens the file at path after

unwrapping the intermediate Result

Returns Some("txt")

221File operations in Rust
The full API is straightforward for anyone who has used code to manipulate paths
before, so it won’t be fleshed out here. Still, it may be worth discussing why it’s included
within the language because many languages omit this.

NOTE As an implementation detail, std::fs::Path and std::fs::PathBuf
are implemented on top of std::ffi::OsStr and std::ffi::OsString, respec-
tively. This means that Path and PathBuf are not guaranteed to be UTF-8
compliant.

Why use Path rather than manipulating strings directly? Here are some good reasons
for using Path:

 Clear intent—Path provides useful methods like set_extension() that describe
the intended outcome. This can assist programmers who later read the code.
Manipulating strings doesn’t provide that level of self-documentation.

 Portability—Some operating systems treat filesystem paths as case-insensitive.
Others don’t. Using one operating system’s conventions can result in issues
later, when users expect their host system’s conventions to be followed. Addi-
tionally, path separators are specific to operating systems and, thus, can differ.
This means that using raw strings can lead to portability issues. Comparisons
require exact matches.

 Easier debugging—If you’re attempting to extract /tmp from the path /tmp/
hello.txt, doing it manually can introduce subtle bugs that may only appear at
runtime. Further, miscounting the correct number of index values after split-
ting the string on / introduces a bug that can’t be caught at compile time.

To illustrate the subtle errors, consider the case of separators. Slashes are common in
today’s operating systems, but those conventions took some time to become established:

 \ is commonly used on MS Windows.
 / is the convention for UNIX-like operating systems.
 : was the path separator for the classic Mac OS.
 > is used in the Stratus VOS operating system.

Table 7.4 compares the two strings: std::String and std::path::Path.

Table 7.4 Using std::String and std::path::Path to extract a file’s parent directory

fn main() {
 let hello = String::from("/tmp/
hello.txt");
 let tmp_dir = hello.split("/").nth(0);
 println!("{:?}", tmp_dir);
}

use std::path::PathBuf;

fn main() {
 let mut hello = PathBuf::from("/tmp/
hello.txt");
 hello.pop();
 println!("{:?}", hello.display());
}Splits hello at its backslashes,

then takes the 0th element of
the resulting Vec<String>

Mistake!
Prints

Some("").

Truncates hello in place

Success! Prints "/tmp".

222 CHAPTER 7 Files and storage
7.5 Implementing a key-value store with a log-structured,
append-only storage architecture
It’s time to tackle something larger. Let’s begin to lift the lid on database technology.
Along the way, we’ll learn the internal architecture of a family of database systems
using a log-structured, append-only model.

 Log-structured, append-only database systems are significant as case studies because
these are designed to be extremely resilient while offering optimal read performance.
Despite storing data on fickle media like flash storage or a spinning hard disk drive,
databases using this model are able to guarantee that data will never be lost and that
backed up data files will never be corrupted.

7.5.1 The key-value model

The key-value store implemented in this chapter, actionkv, stores and retrieves sequences
of bytes ([u8]) of arbitrary length. Each sequence has two parts: the first is a key and
the second is a value. Because the &str type is represented as [u8] internally, table 7.5
shows the plain text notation rather than the binary equivalent.

The key-value model enables simple queries such as “What is the capital city of Fiji?”
But it doesn’t support asking broader queries such as “What is the list of capital cities
for all Pacific Island states?”

7.5.2 Introducing actionkv v1: An in-memory key-value store with a
command-line interface

The first version of our key-value store, actionkv, exposes us to the API that we’ll use
throughout the rest of the chapter and also introduces the main library code. The
library code will not change as the subsequent two systems are built on top of it. Before
we get to that code, though, there are some prerequisites that need to be covered.

The plain String code lets you use familiar methods,
but it can introduce subtle bugs that are difficult to detect
at compile time. In this instance, we’ve used the wrong
index number to access the parent directory (/tmp).

Using path::Path doesn’t make your code immune to
subtle errors, but it can certainly help to minimize their
likelihood. Path provides dedicated methods for com-
mon operations such as setting a file’s extension.

Table 7.5 Illustrating keys and values by matching countries with their capital cities

Key Value

"Cook Islands" "Avarua"

"Fiji" "Suva"

"Kiribati" "South Tarawa"

"Niue" "Alofi"

Table 7.4 Using std::String and std::path::Path to extract a file’s parent directory (continued)

223Implementing a key-value store with a log-structured, append-only storage architecture
 Unlike other projects in this book, this one uses the library template to start with
(cargo new --lib actionkv). It has the following structure:

actionkv
├── src
│ ├── akv_mem.rs
│ └── lib.rs
└── Cargo.toml

Using a library crate allows programmers to build reusable abstractions within their
projects. For our purposes, we’ll use the same lib.rs file for multiple executables. To
avoid future ambiguity, we need to describe the executable binaries the actionkv proj-
ect produces.

 To do so, provide a bin section within two square bracket pairs ([[bin]]) to the
project’s Cargo.toml file. See lines 14–16 of the following listing. Two square brackets
indicate that the section can be repeated. The source for this listing is in ch7/ch7-
actionkv/Cargo.toml.

 1 [package]
 2 name = "actionkv"
 3 version = "1.0.0"
 4 authors = ["Tim McNamara <author@rustinaction.com>"]
 5 edition = "2018"
 6
 7 [dependencies]
 8 byteorder = "1.2"
 9 crc = "1.7"
10
11 [lib]
12 name = "libactionkv"
13 path = "src/lib.rs"
14
15 [[bin]]
16 name = "akv_mem"
17 path = "src/akv_mem.rs"

Our actionkv project will end up with several files. Figure 7.1 illustrates the relation-
ships and how these work together to build the akv_mem executable, referred to within
the [[bin]] section of the project’s Cargo.toml file.

Listing 7.6 Defining dependencies and other metadata

Extends Rust types with extra traits to write
those to disk, then reads those back into a
program in a repeatable, easy-to-use way

Provides the checksum functionality that we want to include

This section of Cargo.toml lets you define a
name for the library you’re building. Note
that a crate can only have one library.

A [[bin]] section, of which there can be many, defines an
executable file that’s built from this crate. The double square
bracket syntax is required because it unambiguously
describes bin as having one or more elements.

224 CHAPTER 7 Files and storage
7.6 Actionkv v1: The front-end code
The public API of actionkv is comprised of four operations: get, delete, insert, and
update. Table 7.6 describes these operations.

The following listing, an excerpt from listing 7.8, shows the naming considerations
mentioned in the preceding sidebar. For our project, we use Rust’s matching facilities
to efficiently work with the command-line arguments and to dispatch to the correct
internal function.

Table 7.6 Operations supported by actionkv v1

Command Description

get <key> Retrieves the value at key from the store

insert <key> <value> Adds a key-value pair to the store

delete <key> Removes a key-value pair from the store

update <key> <value> Replaces an old value with a new one

Naming is difficult
To access stored key-value pairs, should the API provide a get, retrieve, or, per-
haps, fetch? Should setting values be insert, store, or set? actionkv attempts
to stay neutral by deferring these decisions to the API provided by std::collec-
tions:: HashMap.

libactionkv

src/lib.rs

avk_mem[.exe]

src/akv_mem.rs

Compiles asCompiles as

Imported by

byteorder

crc

Final build
artefact

Cargo.toml

Imported by

External
crates

Describes

Figure 7.1 An outline of how the different files and their dependencies work together in the
actionkv project. The project’s Cargo.toml coordinates lots of activity that ultimately results
in an executable.

225Actionkv v1: The front-end code
32 match action {
33 "get" => match store.get(key).unwrap() {
34 None => eprintln!("{:?} not found", key),
35 Some(value) => println!("{:?}", value),
36 },
37
38 "delete" => store.delete(key).unwrap(),
39
40 "insert" => {
41 let value = maybe_value.expect(&USAGE).as_ref();
42 store.insert(key, value).unwrap()
43 }
44
45 "update" => {
46 let value = maybe_value.expect(&USAGE).as_ref();
47 store.update(key, value).unwrap()
48 }
49
50 _ => eprintln!("{}", &USAGE),
51 }

In full, listing 7.8 presents the code for actionkv v1. Notice that the heavy lifting of
interacting with the filesystem is delegated to an instance of ActionKV called store.
How ActionKV operates is explained in section 7.7. The source for this listing is in
ch7/ch7-actionkv1/src/akv_mem.rs.

 1 use libactionkv::ActionKV;
 2
 3 #[cfg(target_os = "windows")]
 4 const USAGE: &str = "
 5 Usage:
 6 akv_mem.exe FILE get KEY
 7 akv_mem.exe FILE delete KEY
 8 akv_mem.exe FILE insert KEY VALUE
 9 akv_mem.exe FILE update KEY VALUE
10 ";
11
12 #[cfg(not(target_os = "windows"))]
13 const USAGE: &str = "
14 Usage:
15 akv_mem FILE get KEY
16 akv_mem FILE delete KEY
17 akv_mem FILE insert KEY VALUE
18 akv_mem FILE update KEY VALUE
19 ";
20
21 fn main() {
22 let args: Vec<String> = std::env::args().collect();
23 let fname = args.get(1).expect(&USAGE);

Listing 7.7 Demonstrating the public API

Listing 7.8 In-memory key-value store command-line application

The action command-line
argument has the type &str.

println! needs to use the Debug
syntax ({:?}) because [u8]
contains arbitrary bytes and
doesn’t implement Display.

A future update that
can be added for
compatibility with
Rust’s HashMap,
where insert
returns the old
value if it exists.

Although src/lib.rs exists within our
project, it’s treated the same as any
other crate within the src/bin.rs file.

The cfg attribute allows Windows users
to see the correct file extension in their
help documentation. This attribute is
explained in the next section.

226 CHAPTER 7 Files and storage
24 let action = args.get(2).expect(&USAGE).as_ref();
25 let key = args.get(3).expect(&USAGE).as_ref();
26 let maybe_value = args.get(4);
27
28 let path = std::path::Path::new(&fname);
29 let mut store = ActionKV::open(path).expect("unable to open file");
30 store.load().expect("unable to load data");
31
32 match action {
33 "get" => match store.get(key).unwrap() {
34 None => eprintln!("{:?} not found", key),
35 Some(value) => println!("{:?}", value),
36 },
37
38 "delete" => store.delete(key).unwrap(),
39
40 "insert" => {
41 let value = maybe_value.expect(&USAGE).as_ref();
42 store.insert(key, value).unwrap()
43 }
44
45 "update" => {
46 let value = maybe_value.expect(&USAGE).as_ref();
47 store.update(key, value).unwrap()
48 }
49
50 _ => eprintln!("{}", &USAGE),
51 }
52 }

7.6.1 Tailoring what is compiled with conditional compilation

Rust provides excellent facilities for altering what is compiled depending on the com-
piler target architecture. Generally, this is the target’s OS but can be facilities provided by
its CPU. Changing what is compiled depending on some compile-time condition is
known as conditional compilation.

 To add conditional compilation to your project, annotate your source code with
cfg attributes. cfg works in conjunction with the target parameter provided to rustc
during compilation.

 Listing 7.8 provides a usage string common as quick documentation for command-
line utilities for multiple operating systems. It’s replicated in the following listing, which
uses conditional compilation to provide two definitions of const USAGE in the code.
When the project is built for Windows, the usage string contains a .exe file extension.
The resulting binary files include only the data that is relevant for their target.

 3 #[cfg(target_os = "windows")]
 4 const USAGE: &str = "
 5 Usage:
 6 akv_mem.exe FILE get KEY

Listing 7.9 Demonstrating the use of conditional compilation

227Actionkv v1: The front-end code
 7 akv_mem.exe FILE delete KEY
 8 akv_mem.exe FILE insert KEY VALUE
 9 akv_mem.exe FILE update KEY VALUE
10 ";
11
12 #[cfg(not(target_os = "windows"))]
13 const USAGE: &str = "
14 Usage:
15 akv_mem FILE get KEY
16 akv_mem FILE delete KEY
17 akv_mem FILE insert KEY VALUE
18 akv_mem FILE update KEY VALUE
19 ";

There is no negation operator for these matches. That is, #[cfg(target_os != "win-
dows")] does not work. Instead, there is a function-like syntax for specifying matches.
Use #[cfg(not(...))] for negation. #[cfg(all(...))] and #[cfg(any(...))] are
also available to match elements of a list. Lastly, it’s possible to tweak cfg attributes
when invoking cargo or rustc via the --cfg ATTRIBUTE command-line argument.

 The list of conditions that can trigger compilation changes is extensive. Table 7.7
outlines several of these.

Table 7.7 Options available to match against with cfg attributes

Attribute Valid options Notes

target_arch aarch64, arm, mips, powerpc,
powerpc64, x86, x86_64

Not an exclusive list.

target_os android, bitrig, dragonfly,
freebsd, haiku, ios, linux,
macos, netbsd, redox,
openbsd, windows

Not an exclusive list.

target_family unix, windows

target_env "", gnu, msvc, musl This is often an empty string ("").

target_endian big, little

target_pointer_width 32, 64 The size (in bits) of the target archi-
tecture’s pointer. Used for isize,
usize, * const, and * mut
types.

target_has_atomic 8, 16, 32, 64, ptr Integer sizes that have support for
atomic operations. During atomic
operations, the CPU takes respon-
sibility for preventing race condi-
tions with shared data at the
expense of performance. The word
atomic is used in the sense of indi-
visible.

228 CHAPTER 7 Files and storage
7.7 Understanding the core of actionkv:
The libactionkv crate
The command-line application built in section 7.6 dis-
patches its work to libactionkv::ActionKV. The responsi-
bilities of the ActionKV struct are to manage interactions
with the filesystem and to encode and decode data from
the on-disk format. Figure 7.2 depicts the relationships.

7.7.1 Initializing the ActionKV struct

Listing 7.10, an excerpt from listing 7.8, shows the initial-
ization process of libactionkv::ActionKV. To create an
instance of libactionkv::ActionKV, we need to do the
following:

1 Point to the file where the data is stored
2 Load an in-memory index from the data within the

file

30 let mut store = ActionKV::open(path)
31 .expect("unable to open file");
32
33 store.load().expect("unable to load data");

Both steps return Result, which is why the calls to .expect() are also present. Let’s
now look inside the code of ActionKV::open() and ActionKV::load(). open() opens
the file from disk, and load() loads the offsets of any pre-existing data into an in-
memory index. The code uses two type aliases, ByteStr and ByteString:

type ByteStr = [u8];

target_vendor apple, pc, unknown

test No available options; just uses a
simple Boolean check.

debug_assertions No available options; just uses a
simple Boolean check. This attri-
bute is present for non-optimized
builds and supports the
debug_assert! macro.

Listing 7.10 Initializing libactionkv::ActionKV

Table 7.7 Options available to match against with cfg attributes (continued)

Attribute Valid options Notes

end user

src/lib.rs

src/bin.rs

Interacts with

Compiles from

akv_mem[.exe]

libactionkv

Imports

Compiles from

Figure 7.2 Relationship
between libactionkv
and other components of
the actionkv project

Opens the file at path

Creates an in-memory index by
loading the data from path

229Understanding the core of actionkv: The libactionkv crate

ByteStr
&str
ByteS

Vec<u

es
We’ll use the ByteStr type alias for data that tends to be used as a string but happens
to be in a binary (raw bytes) form. Its text-based peer is the built-in str. Unlike str,
ByteStr is not guaranteed to contain valid UTF-8 text.

 Both str and [u8] (or its alias ByteStr) are seen in the wild as &str and &[u8] (or
&ByteStr). These are both called slices.

type ByteString = Vec<u8>;

The alias ByteString will be the workhorse when we want to use a type that behaves
like a String. It’s also one that can contain arbitrary binary data. The following listing,
an excerpt from listing 7.16, demonstrates the use of ActionKV::open().

 12 type ByteString = Vec<u8>;
 13
 14 type ByteStr = [u8];
 15
 16 #[derive(Debug, Serialize, Deserialize)]
 17 pub struct KeyValuePair {
 18 pub key: ByteString,
 19 pub value: ByteString,
 20 }
 21
 22 #[derive(Debug)]
 23 pub struct ActionKV {
 24 f: File,
 25 pub index: HashMap<ByteString, u64>,
 26 }
 27
 28 impl ActionKV {
 29 pub fn open(path: &Path) -> io::Result<Self> {
 30 let f = OpenOptions::new()
 31 .read(true)
 32 .write(true)
 33 .create(true)
 34 .append(true)
 35 .open(path)?;
 36 let index = HashMap::new();
 37 Ok(ActionKV { f, index })
 38 }

 79 pub fn load(&mut self) -> io::Result<()> {
 80
 81 let mut f = BufReader::new(&mut self.f);
 82
 83 loop {
 84 let position = f.seek(SeekFrom::Current(0))?;
 85
 86 let maybe_kv = ActionKV::process_record(&mut f);
 87
 88 let kv = match maybe_kv {

Listing 7.11 Using ActionKV::open()

This code processes lots of Vec<u8> data.
Because that’s used in the same way as String
tends to be used, ByteString is a useful alias. is to

what
tring
is to
8>.

Instructs the compiler to generate
serialized code to enable writing
KeyValuePair data to disk. Serialize
and Deserialize are explained in
section 7.2.1.

Maintains a mapping
between keys and
file locations

ActionKV::load() populates the
index of the ActionKV struct,
mapping keys to file positions.

File::seek() returns the
number of bytes from the
start of the file. This becom
the value of the index.

ActionKV::process_record() reads a record
in the file at its current position.

230 CHAPTER 7 Files and storage
 89 Ok(kv) => kv,
 90 Err(err) => {
 91 match err.kind() {
 92 io::ErrorKind::UnexpectedEof => {
 93 break;
 94 }
 95 _ => return Err(err),
 96 }
 97 }
 98 };
 99
100 self.index.insert(kv.key, position);
101 }
102
103 Ok(())
}

7.7.2 Processing an individual record

actionkv uses a published standard for its on-disk representation. It is an implementa-
tion of the Bitcask storage backend that was developed for the original implementa-
tion of the Riak database. Bitcask belongs to a family of file formats known in the
literature as Log-Structured Hash Tables.

What is EOF?
File operations in Rust might return an error of type std::io::ErrorKind::
UnexpectedEof, but what is Eof? The end of file (EOF) is a convention that operating
systems provide to applications. There is no special marker or delimiter at the end
of a file within the file itself.

EOF is a zero byte (0u8). When reading from a file, the OS tells the application how
many bytes were successfully read from storage. If no bytes were successfully read
from disk, yet no error condition was detected, then the OS and, therefore, the appli-
cation assume that EOF has been reached.

This works because the OS has the responsibility for interacting with physical
devices. When a file is read by an application, the application notifies the OS that it
would like to access the disk.

What is Riak?
Riak, a NoSQL database, was developed during the height of the NoSQL movement
and competed against similar systems such as MongoDB, Apache CouchDB, and
Tokyo Tyrant. It distinguished itself with its emphasis on resilience to failure.

Although it was slower than its peers, it guaranteed that it never lost data. That guar-
antee was enabled in part because of its smart choice of a data format.

Unexpected is relative. The
application might not have
expected to encounter the
end of the file, but we expect
files to be finite, so we’ll deal
with that eventuality.

231Understanding the core of actionkv: The libactionkv crate
Bitcask lays every record in a prescribed manner. Figure 7.3 illustrates a single record
in the Bitcask file format.

Every key-value pair is prefixed by 12 bytes. Those bytes describe its length (key_len +
val_len) and its content (checksum).

 The process_record() function does the processing for this within ActionKV. It
begins by reading 12 bytes that represent three integers: a checksum, the length of the
key, and the length of the value. Those values are then used to read the rest of the
data from disk and verify what’s intended. The following listing, an extract from list-
ing 7.16, shows the code for this process.

43 fn process_record<R: Read>(
44 f: &mut R
45) -> io::Result<KeyValuePair> {
46 let saved_checksum =
47 f.read_u32::<LittleEndian>()?;
48 let key_len =
49 f.read_u32::<LittleEndian>()?;
50 let val_len =
51 f.read_u32::<LittleEndian>()?;
52 let data_len = key_len + val_len;
53
54 let mut data = ByteString::with_capacity(data_len as usize);
55
56 {
57 f.by_ref()
58 .take(data_len as u64)
59 .read_to_end(&mut data)?;
60 }

Listing 7.12 Focusing on the ActionKV::process_record() method

Fixed-width header

checksum key_len value_len

Variable-width key Variable-width value

key value

u32 [u8; key_len] [u8; value_len]u32u32

Role

Layout

Data type

Variable

name

Specifying an array’s type with a variable
is not legal Rust but is added here to
demonstrate the relationship between
the header and the body of each record.

Figure 7.3 A single record in the Bitcask file format. To parse a record, read the header information,
then use that information to read the body. Lastly, verify the body’s contents with the checksum
provided in the header.

f may be any type that implements Read, such as
a type that reads files, but can also be &[u8].

The byteorder crate allows
on-disk integers to be read
in a deterministic manner
as discussed in the
following section.

f.by_ref() is required because take(n)
creates a new Read value. Using a
reference within this short-lived
block sidesteps ownership issues.

232 CHAPTER 7 Files and storage
61 debug_assert_eq!(data.len(), data_len as usize);
62
63 let checksum = crc32::checksum_ieee(&data);
64 if checksum != saved_checksum {
65 panic!(
66 "data corruption encountered ({:08x} != {:08x})",
67 checksum, saved_checksum
68);
69 }
70
71 let value = data.split_off(key_len as usize);
72 let key = data;
73
74 Ok(KeyValuePair { key, value })
75 }

7.7.3 Writing multi-byte binary data to disk in a guaranteed byte order

One challenge that our code faces is that it needs to be able to store multi-byte data to
disk in a deterministic way. This sounds easy, but computing platforms differ as to how
numbers are read. Some read the 4 bytes of an i32 from left to right; others read from
right to left. That could potentially be a problem if the program is designed to be writ-
ten by one computer and loaded by another.

 The Rust ecosystem provides some support here. The byteorder crate can extend
types that implement the standard library’s std::io::Read and std::io::Write traits.
std::io::Read and std::io::Write are commonly associated with std::io::File
but are also implemented by other types such as [u8] and TcpStream. The exten-
sions can guarantee how multi-byte sequences are interpreted, either as little endian
or big endian.

 To follow what’s going on with our key-value store, it will help to have an under-
standing of how byteorder works. Listing 7.14 is a toy application that demonstrates
the core functionality. Lines 11–23 show how to write to a file and lines 28–35 show
how to read from one. The two key lines are

use byteorder::{LittleEndian};
use byteorder::{ReadBytesExt, WriteBytesExt};

byteorder::LittleEndian and its peers BigEndian and NativeEndian (not used in
listing 7.14) are types that declare how multi-byte data is written to and read from
disk. byteorder::ReadBytesExt and byteorder::WriteBytesExt are traits. In some
sense, these are invisible within the code.

 These extend methods to primitive types such as f32 and i16 without further cere-
mony. Bringing those into scope with a use statement immediately adds powers to the
types that are implemented within the source of byteorder (in practice, that means
primitive types). Rust, as a statically-typed language, makes this transformation at

debug_assert! tests
are disabled in
optimized builds,
enabling debug
builds to have more
runtime checks.

A checksum (a number) verifies that the bytes read from disk are the
same as what was intended. This process is discussed in section 7.7.4.

The split_off(n)
method splits a
Vec<T> in two
at n.

233Understanding the core of actionkv: The libactionkv crate

compile time. From the running program’s point of view, integers always have the
ability to write themselves to disk in a predefined order.

 When executed, listing 7.14 produces a visualization of the byte patterns that are
created by writing 1_u32, 2_i8, and 3.0_f32 in little-endian order. Here’s the output:

[1, 0, 0, 0]
[1, 0, 0, 0, 2]
[1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 8, 64]

The following listing shows the metadata for the project in listing 7.14. You’ll find the
source code for the following listing in ch7/ch7-write123/Cargo.toml. The source
code for listing 7.14 is in ch7/ch7-write123/src/main.rs.

[package]
name = "write123"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
byteorder = "1.2"

 1 use std::io::Cursor;
 2 use byteorder::{LittleEndian};
 3 use byteorder::{ReadBytesExt, WriteBytesExt};
 4
 5 fn write_numbers_to_file() -> (u32, i8, f64) {
 6 let mut w = vec![];
 7
 8 let one: u32 = 1;
 9 let two: i8 = 2;
10 let three: f64 = 3.0;
11
12 w.write_u32::<LittleEndian>(one).unwrap();
13 println!("{:?}", &w);
14
15 w.write_i8(two).unwrap();
16 println!("{:?}", &w);
17
18 w.write_f64::<LittleEndian>(three).unwrap();
19 println!("{:?}", &w);
20
21 (one, two, three)

Listing 7.13 Metadata for listing 7.14

Listing 7.14 Writing integers to disk

As files support the ability to seek(), moving backward and
forward to different positions, something is necessary to

enable a Vec<T> to mock being a file. io::Cursor plays
that role, enabling an in-memory Vec<T> to be file-like.

Used as a type argument for a
program’s various read_*()
and write_*() methods

Traits that provide
read_*() and write_*()

The variable w
stands for writer.

Writes values to disk. These
methods return io::Result, which
we swallow here as these won’t
fail unless something is seriously
wrong with the computer that’s
running the program.

Single byte types i8
and u8 don’t take
an endianness
parameter.

234 CHAPTER 7 Files and storage
22 }
23
24 fn read_numbers_from_file() -> (u32, i8, f64) {
25 let mut r = Cursor::new(vec![1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 8, 64]);
26 let one_ = r.read_u32::<LittleEndian>().unwrap();
27 let two_ = r.read_i8().unwrap();
28 let three_ = r.read_f64::<LittleEndian>().unwrap();
29
30 (one_, two_, three_)
31 }
32
33 fn main() {
34 let (one, two, three) = write_numbers_to_file();
35 let (one_, two_, three_) = read_numbers_from_file();
36
37 assert_eq!(one, one_);
38 assert_eq!(two, two_);
39 assert_eq!(three, three_);
40 }

7.7.4 Validating I/O errors with checksums

actionkv v1 has no method of validating that what it has read from disk is what was
written to disk. What if something is interrupted during the original write? We may
not be able to recover the original data if this is the case, but if we could recognize the
issue, then we would be in a position to alert the user.

 A well-worn path to overcome this problem is to use a technique called a checksum.
Here’s how it works:

 Saving to disk—Before data is written to disk, a checking function (there are
many options as to which function) is applied to those bytes. The result of the
checking function (the checksum) is written alongside the original data.

No checksum is calculated for the bytes of the checksum. If something
breaks while writing the checksum’s own bytes to disk, this will be noticed later
as an error.

 Reading from disk—Read the data and the saved checksum, applying the check-
ing function to the data. Then compare the results of the two checking func-
tions. If the two results do not match, an error has occurred, and the data
should be considered corrupted.

Which checking function should you use? Like many things in computer science, it
depends. An ideal checksum function would

 Return the same result for the same input
 Always return a different result for different inputs
 Be fast
 Be easy to implement

235Understanding the core of actionkv: The libactionkv crate
Table 7.8 compares the different checksum approaches. To summarize

 The parity bit is easy and fast, but it is somewhat prone to error.
 CRC32 (cyclic redundancy check returning 32 bits) is much more complex, but

its results are more trustworthy.
 Cryptographic hash functions are more complex still. Although being signifi-

cantly slower, they provide high levels of assurance.

Functions that you might see in the wild depend on your application domain. More
traditional areas might see the use of simpler systems, such as a parity bit or CRC32.

IMPLEMENTING PARITY BIT CHECKING

This section describes one of the simpler checksum schemes: parity checking. Parity
checks count the number of 1s within a bitstream. These store a bit that indicates
whether the count was even or odd.

 Parity bits are traditionally used for error detection within noisy communication
systems, such as transmitting data over analog systems such as radio waves. For exam-
ple, the ASCII encoding of text has a particular property that makes it quite conve-
nient for this scheme. Its 128 characters only require 7 bits of storage (128 = 27). That
leaves 1 spare bit in every byte.

 Systems can also include parity bits in larger streams of bytes. Listing 7.15 presents
an (overly chatty) implementation. The parity_bit() function in lines 1–10 takes an
arbitrary stream of bytes and returns a u8, indicating whether the count of the input’s
bits was even or odd. When executed, listing 7.15 produces the following output:

input: [97, 98, 99]
97 (0b01100001) has 3 one bits
98 (0b01100010) has 3 one bits
99 (0b01100011) has 4 one bits
output: 00000001

input: [97, 98, 99, 100]
97 (0b01100001) has 3 one bits
98 (0b01100010) has 3 one bits
99 (0b01100011) has 4 one bits
100 (0b01100100) has 3 one bits
result: 00000000

NOTE The code for the following listing is in ch7/ch7-paritybit/src/main.rs.

Table 7.8 A simplistic evaluation of different checksum functions

Checksum technique Size of result Simplicity Speed Reliability

Parity bit 1 bit ★★★★★ ★★★★★ ★★☆☆☆
CRC32 32 bits ★★★☆☆ ★★★★☆ ★★★☆☆
Cryptographic hash function 128–512 bits (or more) ★☆☆☆☆ ★★☆☆☆ ★★★★★

input: [97, 98, 99] represents
b"abc" as seen by the internals
of the Rust compiler.

input: [97, 98, 99,
100] represents
b"abcd".

236 CHAPTER 7 Files and storage

 1 fn parity_bit(bytes: &[u8]) -> u8 {
 2 let mut n_ones: u32 = 0;
 3
 4 for byte in bytes {
 5 let ones = byte.count_ones();
 6 n_ones += ones;
 7 println!("{} (0b{:08b}) has {} one bits", byte, byte, ones);
 8 }
 9 (n_ones % 2 == 0) as u8
10 }
11
12 fn main() {
13 let abc = b"abc";
14 println!("input: {:?}", abc);
15 println!("output: {:08x}", parity_bit(abc));
16 println!();
17 let abcd = b"abcd";
18 println!("input: {:?}", abcd);
19 println!("result: {:08x}", parity_bit(abcd))
20 }

7.7.5 Inserting a new key-value pair into an existing database

As discussed in section 7.6, there are four operations that our code needs to support:
insert, get, update, and delete. Because we’re using an append-only design, this means
that the last two operations can be implemented as variants of insert.

 You may have noticed that during load(), the inner loop continues until the end
of the file. This allows more recent updates to overwrite stale data, including dele-
tions. Inserting a new record is almost the inverse of process_record(), described in
section 7.7.2. For example

164 pub fn insert(
165 &mut self,
166 key: &ByteStr,
167 value: &ByteStr
168) -> io::Result<()> {
169 let position = self.insert_but_ignore_index(key, value)?;
170
171 self.index.insert(key.to_vec(), position);
172 Ok(())
173 }
174
175 pub fn insert_but_ignore_index(
176 &mut self,
177 key: &ByteStr,
178 value: &ByteStr
179) -> io::Result<u64> {
180 let mut f = BufWriter::new(&mut self.f);
181

Listing 7.15 Implementing parity bit checking

Takes a byte slice as the bytes
argument and returns a single
byte as output. This function could
have easily returned a bool value,
but returning u8 allows the result
to bit shift into some future
desired position.

All of Rust’s integer types come equipped with
count_ones() and count_zeros() methods.

There are plenty of methods to optimize this
function. One fairly simple approach is to hard
code a const [u8; 256] array of 0s and 1s,
corresponding to the intended result, then
index that array with each byte.

key.to_vec() converts the
&ByteStr to a ByteString.

The std::io::BufWriter type batches
multiple short write() calls into
fewer actual disk operations,
resulting in a single one. This
increases throughput while keeping
the application code neater.

237Understanding the core of actionkv: The libactionkv crate
182 let key_len = key.len();
183 let val_len = value.len();
184 let mut tmp = ByteString::with_capacity(key_len + val_len);
185
186 for byte in key {
187 tmp.push(*byte);
188 }
189
190 for byte in value {
191 tmp.push(*byte);
192 }
193
194 let checksum = crc32::checksum_ieee(&tmp);
195
196 let next_byte = SeekFrom::End(0);
197 let current_position = f.seek(SeekFrom::Current(0))?;
198 f.seek(next_byte)?;
199 f.write_u32::<LittleEndian>(checksum)?;
200 f.write_u32::<LittleEndian>(key_len as u32)?;
201 f.write_u32::<LittleEndian>(val_len as u32)?;
202 f.write_all(&mut tmp)?;
203
204 Ok(current_position)
205 }

7.7.6 The full code listing for actionkv

libactionkv performs the heavy lifting in our key-value stores. You have already
explored much of the actionkv project throughout section 7.7. The following listing,
which you’ll find in the file ch7/ch7-actionkv1/src/lib.rs, presents the project code
in full.

 1 use std::collections::HashMap;
 2 use std::fs::{File, OpenOptions};
 3 use std::io;
 4 use std::io::prelude::*;
 5 use std::io::{BufReader, BufWriter, SeekFrom};
 6 use std::path::Path;
 7
 8 use byteorder::{LittleEndian, ReadBytesExt, WriteBytesExt};
 9 use crc::crc32;
 10 use serde_derive::{Deserialize, Serialize};
 11
 12 type ByteString = Vec<u8>;
 13 type ByteStr = [u8];
 14
 15 #[derive(Debug, Serialize, Deserialize)]
 16 pub struct KeyValuePair {
 17 pub key: ByteString,
 18 pub value: ByteString,
 19 }
 20

Listing 7.16 The actionkv project (full code)

Iterating through one
collection to populate another
is slightly awkward, but gets
the job done.

238 CHAPTER 7 Files and storage
 21 #[derive(Debug)]
 22 pub struct ActionKV {
 23 f: File,
 24 pub index: HashMap<ByteString, u64>,
 25 }
 26
 27 impl ActionKV {
 28 pub fn open(
 29 path: &Path
 30) -> io::Result<Self> {
 31 let f = OpenOptions::new()
 32 .read(true)
 33 .write(true)
 34 .create(true)
 35 .append(true)
 36 .open(path)?;
 37 let index = HashMap::new();
 38 Ok(ActionKV { f, index })
 39 }
 40
 41 fn process_record<R: Read>(
 42 f: &mut R
 43) -> io::Result<KeyValuePair> {
 44 let saved_checksum =
 45 f.read_u32::<LittleEndian>()?;
 46 let key_len =
 47 f.read_u32::<LittleEndian>()?;
 48 let val_len =
 49 f.read_u32::<LittleEndian>()?;
 50 let data_len = key_len + val_len;
 51
 52 let mut data = ByteString::with_capacity(data_len as usize);
 53
 54 {
 55 f.by_ref()
 56 .take(data_len as u64)
 57 .read_to_end(&mut data)?;
 58 }
 59 debug_assert_eq!(data.len(), data_len as usize);
 60
 61 let checksum = crc32::checksum_ieee(&data);
 62 if checksum != saved_checksum {
 63 panic!(
 64 "data corruption encountered ({:08x} != {:08x})",
 65 checksum, saved_checksum
 66);
 67 }
 68
 69 let value = data.split_off(key_len as usize);
 70 let key = data;
 71
 72 Ok(KeyValuePair { key, value })
 73 }
 74
 75 pub fn seek_to_end(&mut self) -> io::Result<u64> {

process_record() assumes
that f is already at the right
place in the file.

f.by_ref() is required because .take(n)
creates a new Read instance. Using a
reference within this block allows us to
sidestep ownership issues.

239Understanding the core of actionkv: The libactionkv crate
 76 self.f.seek(SeekFrom::End(0))
 77 }
 78
 79 pub fn load(&mut self) -> io::Result<()> {
 80 let mut f = BufReader::new(&mut self.f);
 81
 82 loop {
 83 let current_position = f.seek(SeekFrom::Current(0))?;
 84
 85 let maybe_kv = ActionKV::process_record(&mut f);
 86 let kv = match maybe_kv {
 87 Ok(kv) => kv,
 88 Err(err) => {
 89 match err.kind() {
 90 io::ErrorKind::UnexpectedEof => {
 91 break;
 92 }
 93 _ => return Err(err),
 94 }
 95 }
 96 };
 97
 98 self.index.insert(kv.key, current_position);
 99 }
100
101 Ok(())
102 }
103
104 pub fn get(
105 &mut self,
106 key: &ByteStr
107) -> io::Result<Option<ByteString>> {
108 let position = match self.index.get(key) {
109 None => return Ok(None),
110 Some(position) => *position,
111 };
112
113 let kv = self.get_at(position)?;
114
115 Ok(Some(kv.value))
116 }
117
118 pub fn get_at(
119 &mut self,
120 position: u64
121) -> io::Result<KeyValuePair> {
122 let mut f = BufReader::new(&mut self.f);
123 f.seek(SeekFrom::Start(position))?;
124 let kv = ActionKV::process_record(&mut f)?;
125
126 Ok(kv)
127 }
128
129 pub fn find(
130 &mut self,

"Unexpected" is relative.
The application may not
have expected it, but we
expect files to be finite.

Wraps Option within
Result to allow for the
possibility of an I/O error
as well as tolerating
missing values

240 CHAPTER 7 Files and storage
131 target: &ByteStr
132) -> io::Result<Option<(u64, ByteString)>> {
133 let mut f = BufReader::new(&mut self.f);
134
135 let mut found: Option<(u64, ByteString)> = None;
136
137 loop {
138 let position = f.seek(SeekFrom::Current(0))?;
139
140 let maybe_kv = ActionKV::process_record(&mut f);
141 let kv = match maybe_kv {
142 Ok(kv) => kv,
143 Err(err) => {
144 match err.kind() {
145 io::ErrorKind::UnexpectedEof => {
146 break;
147 }
148 _ => return Err(err),
149 }
150 }
151 };
152
153 if kv.key == target {
154 found = Some((position, kv.value));
155 }
156
157 // important to keep looping until the end of the file,
158 // in case the key has been overwritten
159 }
160
161 Ok(found)
162 }
163
164 pub fn insert(
165 &mut self,
166 key: &ByteStr,
167 value: &ByteStr
168) -> io::Result<()> {
169 let position = self.insert_but_ignore_index(key, value)?;
170
171 self.index.insert(key.to_vec(), position);
172 Ok(())
173 }
174
175 pub fn insert_but_ignore_index(
176 &mut self,
177 key: &ByteStr,
178 value: &ByteStr
179) -> io::Result<u64> {
180 let mut f = BufWriter::new(&mut self.f);
181
182 let key_len = key.len();
183 let val_len = value.len();
184 let mut tmp = ByteString::with_capacity(key_len + val_len);
185

"Unexpected" is relative.
The application may not
have expected it, but we
expect files to be finite.

241Understanding the core of actionkv: The libactionkv crate
186 for byte in key {
187 tmp.push(*byte);
188 }
189
190 for byte in value {
191 tmp.push(*byte);
192 }
193
194 let checksum = crc32::checksum_ieee(&tmp);
195
196 let next_byte = SeekFrom::End(0);
197 let current_position = f.seek(SeekFrom::Current(0))?;
198 f.seek(next_byte)?;
199 f.write_u32::<LittleEndian>(checksum)?;
200 f.write_u32::<LittleEndian>(key_len as u32)?;
201 f.write_u32::<LittleEndian>(val_len as u32)?;
202 f.write_all(&tmp)?;
203
204 Ok(current_position)
205 }
206
207 #[inline]
208 pub fn update(
209 &mut self,
210 key: &ByteStr,
211 value: &ByteStr
212) -> io::Result<()> {
213 self.insert(key, value)
214 }
215
216 #[inline]
217 pub fn delete(
218 &mut self,
219 key: &ByteStr
220) -> io::Result<()> {
221 self.insert(key, b"")
222 }
223 }

If you’ve made it this far, you should congratulate yourself. You’ve implemented a key-
value store that will happily store and retrieve whatever you have to throw at it.

7.7.7 Working with keys and values with HashMap and BTreeMap

Working with key-value pairs happens in almost every programming language. For the
tremendous benefit of learners everywhere, this task and the data structures that sup-
port it have many names:

 You might encounter someone with a computer science background who pre-
fers to use the term hash table.

 Perl and Ruby call these hashes.
 Lua does the opposite and uses the term table.

242 CHAPTER 7 Files and storage
 Many communities name the structure after a metaphor such as a dictionary or
a map.

 Other communities prefer naming based on the role that the structure plays.
 PHP describes these as associative arrays.
 JavaScript’s objects tend to be implemented as a key-value pair collection and so

the generic term object suffices.
 Static languages tend to name these according to how they are implemented.
 C++ and Java distinguish between a hash map and a tree map.

Rust uses the terms HashMap and BTreeMap to define two implementations of the same
abstract data type. Rust is closest to C++ and Java in this regard. In this book, the terms
collection of key-value pairs and associative array refer to the abstract data type. Hash table
refers to associative arrays implemented with a hash table, and a HashMap refers to
Rust’s implementation of hash tables.

What is a hash? What is hashing?
If you’ve ever been confused by the term hash, it may help to understand that this
relates to an implementation decision made to enable non-integer keys to map to val-
ues. Hopefully, the following definitions will clarify the term:

 A HashMap is implemented with a hash function. Computer scientists will under-
stand that this implies a certain behavior pattern in common cases. A hash
map has a constant time lookup in general, formally denoted as O(1) in big O
notation. (Although a hash map’s performance can suffer when its underlying
hash function encounters some pathological cases as we’ll see shortly.)

 A hash function maps between values of variable-length to fixed-length. In prac-
tice, the return value of a hash function is an integer. That fixed-width value
can then be used to build an efficient lookup table. This internal lookup table
is known as a hash table.

The following example shows a basic hash function for &str that simply interprets
the first character of a string as an unsigned integer. It, therefore, uses the first char-
acter of the string as an hash value:

fn basic_hash(key: &str) -> u32 {
 let first = key.chars()

 .next()

 .unwrap_or('\0');

 unsafe {
 std::mem::transmute::<char, u32>(first)
 }
}

The .chars() iterator converts
the string into a series of char
values, each 4 bytes long.

Returns an Option that’s
either Some(char) or None
for empty strings

If an empty string, provides NULL as the default.
unwrap_or() behaves as unwrap() but provides a value
rather than panicking when it encounters None.

Interprets the memory
of first as an u32, even
though its type is char

243Understanding the core of actionkv: The libactionkv crate
7.7.8 Creating a HashMap and populating it with values

The next listing provides a collection of key-value pairs encoded as JSON. It uses some
Polynesian island nations and their capital cities to show the use of an associative array.

{
 "Cook Islands": "Avarua",
 "Fiji": "Suva",
 "Kiribati": "South Tarawa",
 "Niue": "Alofi",
 "Tonga": "Nuku'alofa",
 "Tuvalu": "Funafuti"
}

Rust does not provide a literal syntax for HashMap within the standard library. To insert
items and get them out again, follow the example provided in listing 7.18, whose
source is available in ch7/ch7-pacific-basic/src/main.rs. When executed, listing 7.18
produces the following line in the console:
Capital of Tonga is: Nuku'alofa

 1 use std::collections::HashMap;
 2
 3 fn main() {

basic_hash can take any string as input—an infinite set of possible inputs—and
return a fixed-width result for all of those in a deterministic manner. That’s great! But,
although basic_hash is fast, it has some significant faults.

If multiple inputs start with the same character (for example, Tonga and Tuvalu), these
result in the same output. This happens in every instance when an infinite input
space is mapped into a finite space, but it’s particularly bad here. Natural language
text is not uniformly distributed.

Hash tables, including Rust’s HashMap, deal with this phenomenon, which is called
a hash collision. These provide a backup location for keys with the same hash value.
That secondary storage is typically a Vec<T> that we’ll call the collision store. When
collisions occur, the collision store is scanned from front to back when it is accessed.
That linear scan takes longer and longer to run as the store’s size increases. Attack-
ers can make use of this characteristic to overload the computer that is performing
the hash function.

In general terms, faster hash functions do less work to avoid being attacked. These
will also perform best when their inputs are within a defined range.

Fully understanding the internals of how hash tables are implemented is too much
detail for this sidebar. But it’s a fascinating topic for programmers who want to
extract optimum performance and memory usage from their programs.

Listing 7.17 Demonstrating the use of an associative array in JSON notation

Listing 7.18 An example of the basic operations of HashMap

244 CHAPTER 7 Files and storage
 4 let mut capitals = HashMap::new();
 5
 6 capitals.insert("Cook Islands", "Avarua");
 7 capitals.insert("Fiji", "Suva");
 8 capitals.insert("Kiribati", "South Tarawa");
 9 capitals.insert("Niue", "Alofi");
10 capitals.insert("Tonga", "Nuku'alofa");
11 capitals.insert("Tuvalu", "Funafuti");
12
13 let tongan_capital = capitals["Tonga"];
14
15 println!("Capital of Tonga is: {}", tongan_capital);
16 }

Writing everything out as method calls can feel needlessly verbose at times. With some
support from the wider Rust ecosystem, it’s possible to inject JSON string literals into
Rust code. It’s best that the conversion is done at compile time, meaning no loss of
runtime performance. The output of listing 7.19 is also a single line:

Capital of Tonga is: "Nuku'alofa"

The next listing uses a serde-json crate to include JSON literals within your Rust
source code. Its source code is in the ch7/ch7-pacific-json/src/main.rs file.

 1 #[macro_use]
 2 extern crate serde_json;
 3
 4 fn main() {
 5 let capitals = json!({
 6 "Cook Islands": "Avarua",
 7 "Fiji": "Suva",
 8 "Kiribati": "South Tarawa",
 9 "Niue": "Alofi",
10 "Tonga": "Nuku'alofa",
11 "Tuvalu": "Funafuti"
12 });
13
14 println!("Capital of Tonga is: {}", capitals["Tonga"])
15 }

7.7.9 Retrieving values from HashMap and BTreeMap

The main advantage that a key-value store provides is the ability to access its values.
There are two ways to achieve this. To demonstrate, let’s assume that we have initial-
ized capitals from listing 7.19. The approach (already demonstrated) is to access val-
ues via square brackets:

capitals["Tonga"]

Listing 7.19 Including JSON literals with serde-json

Type declarations of keys and
values are not required here
as these are inferred by the
Rust compiler.

HashMap implements Index,
which allows for values to
be retrieved via the square
bracket indexing style.

Uses double quotes because the json!
macro returns a wrapper around
String, its default representation

Incorporates the serde_json crate
and makes use of its macros, bringing
the json! macro into scope

json! takes a JSON literal and some
Rust expressions to implement String
values. It converts these into a Rust
value of type serde_json::Value, an
enum that can represent every type
within the JSON specification.

Returns "Nuku’alofa"

245Understanding the core of actionkv: The libactionkv crate
This approach returns a read-only reference to the value, which is deceptive when
dealing with examples containing string literals because their status as references is
somewhat disguised. In the syntax used by Rust’s documentation, this is described as
&V, where & denotes a read-only reference and V is the type of the value. If the key is
not present, the program will panic.

NOTE Index notation is supported by all types that implement the Index trait.
Accessing capitals["Tonga"] is syntactic sugar for capitals.index("Tonga").

It’s also possible to use the .get() method on HashMap. This returns an Option<&V>,
providing the opportunity to recover from cases where values are missing. For example

capitals.get("Tonga")

Other important operations supported by HashMap include

 Deleting key-value pairs with the .remove() method
 Iterating over keys, values, and key-value pairs with the .keys(), .values(), and

.iter() methods, respectively, as well as their read-write variants, .keys_mut(),

.values_mut(), and .iter_mut()

There is no method for iterating through a subset of the data. For that, we need to use
BTreeMap.

7.7.10 How to decide between HashMap and BTreeMap

If you’re wondering about which backing data structure to choose, here is a simple
guideline: use HashMap unless you have a good reason to use BTreeMap. BTreeMap is
faster when there is a natural ordering between the keys, and your application makes
use of that arrangement. Table 7.9 highlights the differences.

 Let’s demonstrate these two use cases with a small example from Europe. The
Dutch East India Company, known as VOC after the initials of its Dutch name, Ver-
eenigde Oostindische Compagnie, was an extremely powerful economic and political
force at its peak. For two centuries, VOC was a dominant trader between Asia and
Europe. It had its own navy and currency, and established its own colonies (called
trading posts). It was also the first company to issue bonds. In the beginning, investors
from six business chambers (kamers) provided capital for the business.

 Let’s use these investments as key-value pairs. When listing 7.20 is compiled, it pro-
duces an executable that generates the following output:

$ cargo run -q
Rotterdam invested 173000
Hoorn invested 266868
Delft invested 469400
Enkhuizen invested 540000
Middelburg invested 1300405
Amsterdam invested 3697915
smaller chambers: Rotterdam Hoorn Delft

Returns Some("Nuku’alofa")

246 CHAPTER 7 Files and storage

Prin
so
o

 1 use std::collections::BTreeMap;
 2
 3 fn main() {
 4 let mut voc = BTreeMap::new();
 5
 6 voc.insert(3_697_915, "Amsterdam");
 7 voc.insert(1_300_405, "Middelburg");
 8 voc.insert(540_000, "Enkhuizen");
 9 voc.insert(469_400, "Delft");
10 voc.insert(266_868, "Hoorn");
11 voc.insert(173_000, "Rotterdam");
12
13 for (guilders, kamer) in &voc {
14 println!("{} invested {}", kamer, guilders);
15 }
16
17 print!("smaller chambers: ");
18 for (_guilders, kamer) in voc.range(0..500_000) {
19 print!("{} ", kamer);
20 }
21 println!("");
}

7.7.11 Adding a database index to actionkv v2.0

Databases and filesystems are much larger pieces of software than single files. There is
a large design space involved with storage and retrieval systems, which is why new ones
are always being developed. Common to all of those systems, however, is a component
that is the real smarts behind the database.

 Built in section 7.5.2, actionkv v1 contains a major issue that prevents it from hav-
ing a decent startup time. Every time it’s run, it needs to rebuild its index of where
keys are stored. Let’s add the ability for actionkv to store its own data that indexes
within the same file that’s used to store its application data. It will be easier than it
sounds. No changes to libactionkv are necessary. And the front-end code only
requires minor additions. The project folder now has a new structure with an extra
file (shown in the following listing).

Listing 7.20 Demonstrating range queries and ordered iteration of BTreeMap

Table 7.9 Deciding on which implementation to use to map keys to values

std::collections::HashMap with a
default hash function (known as SipHash
in the literature)

Cryptographically secure and resistant to denial
of service attacks but slower than alternative hash
functions

std::collections::BTreeMap Useful for keys with an inherent ordering, where
cache coherence can provide a boost in speed

ts in
rted
rder

BTreeMap lets you
select a portion of
the keys that are
iterated through
with the range
syntax.

247Understanding the core of actionkv: The libactionkv crate
actionkv
├── src
│ ├── akv_disk.rs
│ ├── akv_mem.rs
│ └── lib.rs
└── Cargo.toml

The project’s Cargo.toml adds some new dependencies along with a second [[bin]]
entry, as the last three lines of the following listing show. The source for this listing is
in ch7/ch7-actionkv2/Cargo.toml.

[package]
name = "actionkv"
version = "2.0.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
bincode = "1"
byteorder = "1"
crc = "1"
serde = "1"
serde_derive = "1"

[lib]
name = "libactionkv"
path = "src/lib.rs"

[[bin]]
name = "akv_mem"
path = "src/akv_mem.rs"

[[bin]]
name = "akv_disk"
path = "src/akv_disk.rs"

When a key is accessed with the get operation, to find its location on disk, we first
need to load the index from disk and convert it to its in-memory form. The following
listing is an excerpt from listing 7.24. The on-disk implementation of actionkv includes
a hidden INDEX_KEY value that allows it to quickly access other records in the file.

48 match action {
49 "get" => {
50 let index_as_bytes = a.get(&INDEX_KEY)
51 .unwrap()
52 .unwrap();

Listing 7.21 The updated project structure for actionkv v2.0

Listing 7.22 Updating the Cargo.toml file for actionkv v2.0

Listing 7.23 Highlighting the main change from listing 7.8

New file included
in the project

Two updates that add a new
binary and dependencies
are required in Cargo.toml.

New dependencies to
assist with writing
the index to disk

New executable
definition

INDEX_KEY is an internal hidden name
of the index within the database.

Two unwrap() calls are required
because a.index is a HashMap
that returns Option, and values
themselves are stored within an
Option to facilitate possible
future deletes.

248 CHAPTER 7 Files and storage
53
54 let index_decoded = bincode::deserialize(&index_as_bytes);
55
56 let index: HashMap<ByteString, u64> = index_decoded.unwrap();
57
58 match index.get(key) {
59 None => eprintln!("{:?} not found", key),
60 Some(&i) => {
61 let kv = a.get_at(i).unwrap();
62 println!("{:?}", kv.value)
63 }
64 }
65 }

The following listing shows a key-value store that persists its index data between runs.
The source for this listing is in ch7/ch7-actionkv2/src/akv_disk.rs.

 1 use libactionkv::ActionKV;
 2 use std::collections::HashMap;
 3
 4 #[cfg(target_os = "windows")]
 5 const USAGE: &str = "
 6 Usage:
 7 akv_disk.exe FILE get KEY
 8 akv_disk.exe FILE delete KEY
 9 akv_disk.exe FILE insert KEY VALUE
10 akv_disk.exe FILE update KEY VALUE
11 ";
12
13 #[cfg(not(target_os = "windows"))]
14 const USAGE: &str = "
15 Usage:
16 akv_disk FILE get KEY
17 akv_disk FILE delete KEY
18 akv_disk FILE insert KEY VALUE
19 akv_disk FILE update KEY VALUE
20 ";
21
22 type ByteStr = [u8];
23 type ByteString = Vec<u8>;
24
25 fn store_index_on_disk(a: &mut ActionKV, index_key: &ByteStr) {
26 a.index.remove(index_key);
27 let index_as_bytes = bincode::serialize(&a.index).unwrap();
28 a.index = std::collections::HashMap::new();
29 a.insert(index_key, &index_as_bytes).unwrap();
30 }
31
32 fn main() {
33 const INDEX_KEY: &ByteStr = b"+index";
34
35 let args: Vec<String> = std::env::args().collect();

Listing 7.24 Persisting index data between runs

Retrieving a value
now involves fetching
the index first, then
identifying the correct
location on disk.

249Summary
36 let fname = args.get(1).expect(&USAGE);
37 let action = args.get(2).expect(&USAGE).as_ref();
38 let key = args.get(3).expect(&USAGE).as_ref();
39 let maybe_value = args.get(4);
40
41 let path = std::path::Path::new(&fname);
42 let mut a = ActionKV::open(path).expect("unable to open file");
43
44 a.load().expect("unable to load data");
45
46 match action {
47 "get" => {
48 let index_as_bytes = a.get(&INDEX_KEY)
49 .unwrap()
50 .unwrap();
51
52 let index_decoded = bincode::deserialize(&index_as_bytes);
53
54 let index: HashMap<ByteString, u64> = index_decoded.unwrap();
55
56 match index.get(key) {
57 None => eprintln!("{:?} not found", key),
58 Some(&i) => {
59 let kv = a.get_at(i).unwrap();
60 println!("{:?}", kv.value)
61 }
62 }
63 }
64
65 "delete" => a.delete(key).unwrap(),
66
67 "insert" => {
68 let value = maybe_value.expect(&USAGE).as_ref();
69 a.insert(key, value).unwrap();
70 store_index_on_disk(&mut a, INDEX_KEY);
71 }
72
73 "update" => {
74 let value = maybe_value.expect(&USAGE).as_ref();
75 a.update(key, value).unwrap();
76 store_index_on_disk(&mut a, INDEX_KEY);
77 }
78 _ => eprintln!("{}", &USAGE),
79 }
80 }

Summary
 Converting between in-memory data structures and raw byte streams to be

stored in files or sent over the network is known as serialization and deserializa-
tion. In Rust, serde is the most popular choice for these two tasks.

 Interacting with the filesystem almost always implies handling std::io::Result
. Result is used for errors that are not part of normal control flow.

To print values, we need to
use Debug as an [u8] value
contains arbitrary bytes.

The index must
also be updated
whenever the
data changes.

250 CHAPTER 7 Files and storage
 Filesystem paths have their own types: std::path::Path and std::path::
PathBuf. While it adds to the learning burden, implementing these allows you
to avoid common mistakes that can occur by treating paths directly as strings.

 To mitigate the risk of data corruption during transit and storage, use check-
sums and parity bits.

 Using a library crate makes it easier to manage complex software projects. Librar-
ies can be shared between projects, and you can make these more modular.

 There are two primary data structures for handling key-value pairs within the
Rust standard library: HashMap and BTreeMap. Use HashMap unless you know
that you want to make use of the features offered by BTreeMap.

 The cfg attribute and cfg! macro allow you to compile platform-specific code.
 To print to standard error (stderr), use the eprintln! macro. Its API is identi-

cal to the println! macro that is used to print to standard output (stdout).
 The Option type is used to indicate when values may be missing, such as asking

for an item from an empty list.

Networking
This chapter describes how to make HTTP requests multiple times, stripping away
a layer of abstraction each time. We start by using a user-friendly library, then boil
that away until we’re left with manipulating raw TCP packets. When we’re finished,
you’ll be able to distinguish an IP address from a MAC address. And you’ll learn
why we went straight from IPv4 to IPv6.

 You’ll also learn lots of Rust in this chapter, most of it related to advanced error
handling techniques that become essential for incorporating upstream crates. Sev-
eral pages are devoted to error handling. This includes a thorough introduction to
trait objects.

 Networking is a difficult subject to cover in a single chapter. Each layer is a frac-
tal of complexity. Networking experts will hopefully overlook my lack of depth in
treating such a diverse topic.

This chapter covers
 Implementing a networking stack

 Handling multiple error types within local scope

 When to use trait objects

 Implementing state machines in Rust
251

252 CHAPTER 8 Networking
 Figure 8.1 provides an overview of the topics that the chapter covers. Some of the
projects that we cover include implementing DNS resolution and generating standards-
compliant MAC addresses, including multiple examples of generating HTTP requests.
A bit of a role-playing game is added for light relief.

8.1 All of networking in seven paragraphs
Rather than trying to learn the whole networking stack, let’s focus on something that’s of
practical use. Most readers of this book will have encountered web programming. Most
web programming involves interacting with some sort of framework. Let’s look there.

 HTTP is the protocol that web frameworks understand. Learning more about
HTTP enables us to extract the most performance out of our web frameworks. It can
also help us to more easily diagnose any problems that occur. Figure 8.2 shows net-
working protocols for content delivery over the internet.

 Networking is comprised of layers. If you’re new to the field, don’t be intimidated
by a flood of acronyms. The most important thing to remember is that lower levels are

N
et

w
or

ki
ng

 c
on

ce
pt

Pro
je

ct

R
us

t c
on

ce
pt

Network protocols

HTTP

Trait objects

HTTP GET with reqwest

TCP

DNS

Micro RPG

HTTP GET with std::net::TcpStream

DNS resolver

Advanced error handling

Parse error handler

MAC address

MAC address generator

State machines in Rust

HTTP GET with raw TCP

SECTION

Figure 8.1 Networking chapter
map. The chapter incorporates a
healthy mix of theory and
practical exercises.

253All of networking in seven paragraphs
C
O

N
T
A

C
T

IN
F

O

ETHERNET

W
iF

i
MAC ADDRESS

IPv4

IP
v
6

ARP

N
D

P

IC
M

P

TCP

TLS

HTTP

P
O

P

G
O

P
H

E
R

WWW

WEB API

HTML
CSS

DATA

E
M

A
IL

TE
X
T

N
T

P
L

D
A

P

DATABASE

STANDAR

D
S

A
N

D
L

A
W

S

L
IV

E
B
R
O

A

D
C
A
ST

D
T

L
S

FILES

S
M

T
P

D
H

C
P

IM
A

P

S
T
R

E
A
M

IN
G

VID
EO

DNS

R
T
S
P

U
D

P

LOCAL DECOMPRESSION, DECODING AND PRESENTATION

ABOUT

A view of the networking stack.

Each layer relies upon the layers

below it.

Occassionally layers bleed

together. For example, HTML

files can include directives that

overwrite those provided by

HTTP.

For a message to be received,

each layer must be traversed

from bottom to top. To send

messages, the steps are

reversed.

HOW TO READ

Vertical positioning typically

indicates that two levels interact

at that location.

Exceptions include encryption

provided by TLS. Network

addressing provided by

either IPv4 or IPv6, and virtual

layers are largely ignorant of

physical links. (Shadows from

physics do appear on upper

layers in the form of latency and

reliability.)

Gaps indicate that a higher level

can pass directly through to the

lower level. A domain name or TLS

security is not necessary for HTTP

to function, for example.

LEGEND

Protocol discussed in this chapter

Protocol in use at this level

Represents hundreds of other

protocols that exist at this level

This protocol is available,

but may not be deployed.

3

4

2

1

6

7

OSI m
odel

5

TCP/IP
m

odel

A
P

P
L

IC
A

T
IO

N
T

R
A

N
S

P
O

R
T

IN
T

E
R

N
E

T
L

IN
K

How computers talk to each other

JS

Figure 8.2 Several layers of networking protocols involved with delivering content over the internet. The figure
compares some common models, including the seven-layer OSI model and the four-layer TCP/IP model.

254 CHAPTER 8 Networking
unaware of what’s happening above them, and higher levels are agnostic to what’s
happening below them. Lower levels receive a stream of bytes and pass it on. Higher
levels don’t care how messages are sent; they just want them sent.

 Let’s consider one example: HTTP. HTTP is known as an application-level protocol.
Its job is to transport content like HTML, CSS, JavaScript, WebAssembly modules,
images, video, and other formats. These formats often include other embedded for-
mats via compression and encoding standards. HTTP itself often redundantly includes
information provided by one of the layers below it, TCP. Between HTTP and TCP sits
TLS. TLS (Transport Layer Security), which has replaced SSL (Secure Sockets Layer),
adds the S to HTTPS.

 TLS provides encrypted messaging over an unencrypted connection. TLS is imple-
mented on top of TCP. TCP sits upon many other protocols. These go all the way down
to specifying how voltages should be interpreted as 0s and 1s. And yet, as complicated as
this story is so far, it gets worse. These layers, as you have probably seen in your dealings
with those as a computer user, bleed together like watercolor paint.

 HTML includes a mechanism to supplement or overwrite directives omitted or
specified within HTTP: the <meta> tag’s http-equiv attribute. HTTP can make adjust-
ments downwards to TCP. The “Connection: keep-alive” HTTP header instructs TCP
to maintain its connection after this HTTP message has been received. These sorts of
interactions occur all through the stack. Figure 8.2 provides one view of the network-
ing stack. It is more complicated than most attempts. And even that complicated pic-
ture is highly simplified.

 Despite all of that, we’re going to try to implement as many layers as possible
within a single chapter. By the end of it, you will be sending HTTP requests with a vir-
tual networking device and a minimal TCP implementation that you created yourself,
using a DNS resolver that you also created yourself.

8.2 Generating an HTTP GET request with reqwest
Our first implementation will be with a high-level library that is focused on HTTP.
We’ll use the reqwest library because its focus is primarily on making it easy for Rust
programmers to create an HTTP request.

 Although it’s the shortest, the reqwest implementation is the most feature-complete.
As well as being able to correctly interpret HTTP headers, it also handles cases like
content redirects. Most importantly, it understands how to handle TLS properly.

 In addition to expanded networking capabilities, reqwest also validates the con-
tent’s encoding and ensures that it is sent to your application as a valid String. None
of our lower-level implementations do any of that. The following shows the project
structure for listing 8.2:

ch8-simple/
├── src
│ └── main.rs
└── Cargo.toml

255Generating an HTTP GET request with reqwest
The following listing shows the metadata for listing 8.2. The source code for this list-
ing is in ch8/ch8-simple/Cargo.toml.

[package]
name = "ch8-simple"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
reqwest = "0.9"

The following listing illustrates how to make an HTTP request with the reqwest
library. You’ll find the source in ch8/ch8-simple/src/main.rs.

 1 use std::error::Error;
 2
 3 use reqwest;
 4
 5 fn main() -> Result<(), Box<dyn Error>> {
 6 let url = "http:/ /www.rustinaction.com/";
 7 let mut response = reqwest::get(url)?;
 8
 9 let content = response.text()?;
10 print!("{}", content);
11
12 Ok(())
13 }

If you’ve ever done any web programming, listing 8.2 should be straightforward.
reqwest::get() issues an HTTP GET request to the URL represented by url. The
response variable holds a struct representing the server’s response. The response
.text() method returns a Result that provides access to the HTTP body after validat-
ing that the contents are a legal String.

 One question, though: What on earth is the error side of the Result return type
Box<dyn std::error::Error>? This is an example of a trait object that enables Rust to
support polymorphism at runtime. Trait objects are proxies for concrete types. The syn-
tax Box<dyn std::error::Error> means a Box (a pointer) to any type that imple-
ments std::error:Error’s.

 Using a library that knows about HTTP allows our programs to omit many details.
For example

 Knowing when to close the connection. HTTP has rules for telling each of the parties
when the connection ends. This isn’t available to us when manually making
requests. Instead, we keep the connection open for as long as possible and
hope that the server will close.

Listing 8.1 Crate metadata for listing 8.2

Listing 8.2 Making an HTTP request with reqwest

Box<dyn Error>
represents a trait
object, which we’ll
cover in section 8.3.

256 CHAPTER 8 Networking
 Converting the byte stream to content. Rules for translating the message body from
[u8] to String (or perhaps an image, video, or some other content) are han-
dled as part of the protocol. This can be tedious to handle manually as HTTP
allows content to be compressed into several methods and encoded into several
plain text formats.

 Inserting or omitting port numbers. HTTP defaults to port 80. A library that is tailored
for HTTP, such as reqwest, allows you to omit port numbers. When we’re building
requests by hand with generic TCP crates, however, we need to be explicit.

 Resolving the IP addresses. The TCP protocol doesn’t actually know about domain
names like www.rustinaction.com, for example. The library resolves the IP
address for www.rustinaction.com on our behalf.

8.3 Trait objects
This section describes trait objects in detail. You will also develop the world’s next
best-selling fantasy role-playing game—the rpg project. If you would like to focus on
networking, feel free to skip ahead to section 8.4.

 There is a reasonable amount of jargon in the next several paragraphs. Brace your-
self. You’ll do fine. Let’s start by introducing trait objects by what they achieve and
what they do, rather than focusing on what they are.

8.3.1 What do trait objects enable?

While trait objects have several uses, they are immediately helpful by allowing you to
create containers of multiple types. Although players of our role-playing game can
choose different races, and each race is defined in its own struct, you’ll want to treat
those as a single type. A Vec<T> won’t work here because we can’t easily have types T, U,
and V wedged into Vec<T> without introducing some type of wrapper object.

8.3.2 What is a trait object?

Trait objects add a form of polymorphism—the ability to share an interface between
types—to Rust via dynamic dispatch. Trait objects are similar to generic objects. Gener-
ics offer polymorphism via static dispatch. Choosing between generics and type objects
typically involves a trade off between disk space and time:

 Generics use more disk space with faster runtimes.
 Trait objects use less disk space but incur a small runtime overhead caused by

pointer indirection.

Trait objects are dynamically-sized types, which means that these are always seen in the
wild behind a pointer. Trait objects appear in three forms: &dyn Trait, &mut dyn
Trait, and Box<dyn Trait>.1 The primary difference between the three forms is that
Box<dyn Trait> is an owned trait object, whereas the other two are borrowed.

1 In old Rust code, you may see &Trait, and Box<Trait>. While legal syntax, these are officially deprecated.
Adding dyn keyword is strongly encouraged.

257Trait objects
8.3.3 Creating a tiny role-playing game: The rpg project

Listing 8.4 is the start of our game. Characters in the game can be one of three races:
humans, elves, and dwarves. These are represented by the Human, Elf, and Dwarf
structs, respectively.

 Characters interact with things. Things are represented by the Thing type.2 Thing
is an enum that currently represents swords and trinkets. There’s only one form of
interaction right now: enchantment. Enchanting a thing involves calling the enchant()
method:

character.enchant(&mut thing)

When enchantment is successful, thing glows brightly. When a mistake occurs, thing
is transformed into a trinket. Within listing 8.4, we create a party of characters with
the following syntax:

58 let d = Dwarf {};
59 let e = Elf {};
60 let h = Human {};
61
62 let party: Vec<&dyn Enchanter> = vec![&d, &h, &e];

Casting the spell involves choosing a spellcaster. We make use of the rand crate for that:

58 let spellcaster = party.choose(&mut rand::thread_rng()).unwrap();
59 spellcaster.enchant(&mut it)

The choose() method originates from the rand::seq::SliceRandom trait that is
brought into scope in listing 8.4. One of the party is chosen at random. The party
then attempts to enchant the object it. Compiling and running listing 8.4 results in a
variation of this:

$ cargo run
...
 Compiling rpg v0.1.0 (/rust-in-action/code/ch8/ch8-rpg)
 Finished dev [unoptimized + debuginfo] target(s) in 2.13s
 Running `target/debug/rpg`
Human mutters incoherently. The Sword glows brightly.

$ target/debug/rpg
Elf mutters incoherently. The Sword fizzes, then turns into a worthless

trinket.

The following listing shows the metadata for our fantasy role-playing game. The
source code for the rpg project is in ch8/ch8-rpg/Cargo.toml.

2 Naming is hard.

Although d, e, and h are different types, using the type
hint &dyn Enchanter tells the compiler to treat each

value as a trait object. These now all have the same type.

Re-executes
the command
without
recompiling

258 CHAPTER 8 Networking
[package]
name = "rpg"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
rand = "0.7"

Listing 8.4 provides an example of using a trait object to enable a container to hold
several types. You’ll find its source in ch8/ch8-rpg/src/main.rs.

 1 use rand;
 2 use rand::seq::SliceRandom;
 3 use rand::Rng;
 4
 5 #[derive(Debug)]
 6 struct Dwarf {}
 7
 8 #[derive(Debug)]
 9 struct Elf {}
10
11 #[derive(Debug)]
12 struct Human {}
13
14 #[derive(Debug)]
15 enum Thing {
16 Sword,
17 Trinket,
18 }
19
20 trait Enchanter: std::fmt::Debug {
21 fn competency(&self) -> f64;
22
23 fn enchant(&self, thing: &mut Thing) {
24 let probability_of_success = self.competency();
25 let spell_is_successful = rand::thread_rng()
26 .gen_bool(probability_of_success);
27
28 print!("{:?} mutters incoherently. ", self);
29 if spell_is_successful {
30 println!("The {:?} glows brightly.", thing);
31 } else {
32 println!("The {:?} fizzes, \
33 then turns into a worthless trinket.", thing);
34 *thing = Thing::Trinket {};
35 }
36 }
37 }
38

Listing 8.3 Crate metadata for the rpg project

Listing 8.4 Using the trait object &dyn Enchanter

gen_bool() generates a
Boolean value, where true
occurs in proportion to its
argument. For example, a
value of 0.5 returns true
50% of the time.

259Trait objects
39 impl Enchanter for Dwarf {
40 fn competency(&self) -> f64 {
41 0.5
42 }
43 }
44 impl Enchanter for Elf {
45 fn competency(&self) -> f64 {
46 0.95
47 }
48 }
49 impl Enchanter for Human {
50 fn competency(&self) -> f64 {
51 0.8
52 }
53 }
54
55 fn main() {
56 let mut it = Thing::Sword;
57
58 let d = Dwarf {};
59 let e = Elf {};
60 let h = Human {};
61
62 let party: Vec<&dyn Enchanter> = vec![&d, &h, &e];
63 let spellcaster = party.choose(&mut rand::thread_rng()).unwrap();
64
65 spellcaster.enchant(&mut it);
66 }

Trait objects are a powerful construct in the language. In a sense, they provide a way
to navigate Rust’s rigid type system. As you learn about this feature in more detail, you
will encounter some jargon. For example, trait objects are a form of type erasure. The
compiler does not have access to the original type during the call to enchant().

Trait vs. type
One of the frustrating things about Rust’s syntax for beginners is that trait objects
and type parameters look similar. But types and traits are used in different places.
For example, consider these two lines:

use rand::Rng;
use rand::rngs::ThreadRng;

Although these both have something to do with random number generators, they’re
quite different. rand::Rng is a trait; rand::rngs::ThreadRng is a struct. Trait objects
make this distinction harder.

When used as a function argument and in similar places, the form &dyn Rng is a ref-
erence to something that implements the Rng trait, whereas &ThreadRng is a refer-
ence to a value of ThreadRng. With time, the distinction between traits and types
becomes easier to grasp. Here’s some common use cases for trait objects:

Dwarves are poor
spellcasters, and their
spells regularly fail.

Spells cast by
elves rarely fail.

Humans are proficient
at enchanting things.
Mistakes are
uncommon.

We can hold members of dif-
ferent types within the same

Vec as all these implement the
Enchanter trait.

260 CHAPTER 8 Networking
8.4 TCP
Dropping down from HTTP, we encounter TCP (Transmission Control Protocol).
Rust’s standard library provides us with cross-platform tools for making TCP requests.
Let’s use those. The file structure for listing 8.6, which creates an HTTP GET request,
is provided here:

ch8-stdlib
├── src
│ └── main.rs
└── Cargo.toml

The following listing shows the metadata for listing 8.6. You’ll find the source for this
listing in ch8/ch8-stdlib/Cargo.toml.

[package]
name = "ch8-stdlib"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]

The next listing shows how to use the Rust standard library to construct an HTTP GET
request with std::net::TcpStream. The source for this listing is in ch8/ch8-stdlib/src/
main.rs.

(continued)

 Creating collections of heterogeneous objects.
 Returning a value. Trait objects enable functions to return multiple concrete

types.
 Supporting dynamic dispatch, whereby the function that is called is deter-

mined at runtime rather than at compile time.

Before the Rust 2018 edition, the situation was even more confusing. The dyn key-
word did not exist. This meant that context was needed to decide between &Rng and
&ThreadRng.

Trait objects are not objects in the sense that an object-oriented programmer would
understand. They’re perhaps closer to a mixin class. Trait objects don’t exist on their
own; they are agents of some other type.

An alternative analogy would be a singleton object that is delegated with some author-
ity by another concrete type. In listing 8.4, the &Enchanter is delegated to act on
behalf of three concrete types.

Listing 8.5 Project metadata for listing 8.6

261TCP
 1 use std::io::prelude::*;
 2 use std::net::TcpStream;
 3
 4 fn main() -> std::io::Result<()> {
 5 let host = "www.rustinaction.com:80";
 6
 7 let mut conn =
 8 TcpStream::connect(host)?;
 9
10 conn.write_all(b"GET / HTTP/1.0")?;
11 conn.write_all(b"\r\n")?;
12
13 conn.write_all(b"Host: www.rustinaction.com")?;
14 conn.write_all(b"\r\n\r\n")?;
15
16 std::io::copy(
17 &mut conn,
18 &mut std::io::stdout()
19)?;
20
21 Ok(())
22 }

Some remarks about listing 8.6:

 On line 10, we specify HTTP 1.0. Using this version of HTTP ensures that the
connection is closed when the server sends its response. HTTP 1.0, however,
does not support “keep alive” requests. Specifying HTTP 1.1 actually confuses
this code as the server will refuse to close the connection until it has received
another request, and the client will never send one.

 On line 13, we include the hostname. This may feel redundant given that we
used that exact hostname when we connected on lines 7–8. However, one
should remembers that the connection is established over IP, which does not
have host names. When TcpStream::connect() connects to the server, it only
uses an IP address. Adding the Host HTTP header allows us to inject that infor-
mation back into the context.

8.4.1 What is a port number?

Port numbers are purely virtual. They are simply u16 values. Port numbers allow a sin-
gle IP address to host multiple services.

8.4.2 Converting a hostname to an IP address

So far, we’ve provided the hostname www.rustinaction.com to Rust. But to send mes-
sages over the internet, the IP (internet protocol) address is required. TCP knows
nothing about domain names. To convert a domain name to an IP address, we rely on
the Domain Name System (DNS) and its process called domain name resolution.

Listing 8.6 Constructing an HTTP GET request

Explicitly specifying the
port (80) is required.
TcpStream does not know
that this will become a
HTTP request.

In many networking
protocols, \r\n signifies
a new line.

Two blank new
lines signify end
of requeststd::io::copy()

streams bytes
from a Reader
to a Writer.

262 CHAPTER 8 Networking
 We’re able to resolve names by asking a server, which can recursively ask other serv-
ers. DNS requests can be made over TCP, including encryption with TLS, but are also
sent over UDP (User Datagram Protocol). We’ll use DNS here because it’s more use-
ful for learning purposes.

 To explain how the translation from a domain name to an IP address works, we’ll
create a small application that does the translation. We’ll call the application resolve.
You’ll find its source code in listing 8.9. The application makes use of public DNS ser-
vices, but you can easily add your own with the -s argument.

Our resolve application only understands a small portion of DNS protocol, but that
portion is sufficient for our purposes. The project makes use of an external crate,
trust-dns, to perform the hard work. The trust-dns crate implements RFC 1035, which
defines DNS and several later RFCs quite faithfully using terminology derived from it.
Table 8.1 outlines some of the terms that are useful to understand.

Public DNS providers
At the time of writing, several companies provide DNS servers for public use. Any of
the IP addresses listed here should offer roughly equivalent service:

 1.1.1.1 and 1.0.0.1 by Cloudflare
 8.8.8.8 and 8.8.4.4. by Google
 9.9.9.9 by Quad9 (founded by IBM)
 64.6.64.6 and 64.6.65.6 by VeriSign

Table 8.1 Terms that are used in RFC 1035, the trust_dns crate, and listing 8.9, and how these
interlink

Term Definition Representation in code

Domain
name

A domain name is almost what
you probably think of when you
use the term domain name in
your everyday language.

The technical definition includes
some special cases such as the
root domain, which is encoded
as a single dot, and domain
names that need to be case-
insensitive.

Defined in trust_dns::domain::Name
pub struct Name {
 is_fqdn: bool,
 labels: Vec<Label>,
}

fqdn stands for fully-
qualified domain name.

263TCP
Message A message is a container for both
requests to DNS servers (called
queries) and responses back to
clients (called answers).

Messages must contain a header,
but other fields are not required. A
Message struct represents this
and includes several Vec<T>
fields. These do not need to be
wrapped in Option to represent
missing values as their length can
be 0.

Defined in trust_dns::domain::Name
struct Message {
 header: Header,
 queries: Vec<Query>,
 answers: Vec<Record>,
 name_servers: Vec<Record>,
 additionals: Vec<Record>,
 sig0: Vec<Record>,
 edns: Option<Edns>,

}

Message
type

A message type identifies the
message as a query or as an
answer. Queries can also be
updates, which are functionality
that our code ignores.

Defined in trust_dns::op::MessageType
pub enum MessageType {
 Query,
 Response,
}

Message ID A number that is used for senders
to link queries and answers.

u16

Resource
record type

The resource record type refers to
the DNS codes that you’ve proba-
bly encountered if you’ve ever con-
figured a domain name.

Of note is how trust_dns handles
invalid codes. The RecordType
enum contains an Unknown(u16)
variant that can be used for codes
that it doesn’t understand.

Defined in
trust_dns::rr::record_type::RecordType
pub enum RecordType {
 A,
 AAAA,
 ANAME,
 ANY,
 // ...
 Unknown(u16),
 ZERO,
}

Query A Query struct holds the domain
name and the record type that
we’re seeking the DNS details for.
These traits also describe the
DNS class and allow queries to
distinguish between messages
sent over the internet from other
transport protocols.

Defined in trust_dns::op::Query
pub struct Query {
 name: Name,
 query_type: RecordType,
 query_class: DNSClass,
}

Table 8.1 Terms that are used in RFC 1035, the trust_dns crate, and listing 8.9, and how these
interlink (continued)

Term Definition Representation in code

sig0, a cryptographically signed
record, verifies the message’s integ-

rity. It is defined in RFC 2535.

edns indicates whether the mes-
sage includes extended DNS.

264 CHAPTER 8 Networking
An unfortunate consequence of the protocol, which I suppose is a consequence of
reality, is that there are many options, types, and subtypes involved. Listing 8.7, an
excerpt from listing 8.9, shows the process of constructing a message that asks, “Dear
DNS server, what is the IPv4 address for domain_name?” The listing constructs the DNS
message, whereas the trust-dns crate requests an IPv4 address for domain_name.

35 let mut msg = Message::new();
36 msg
37 .set_id(rand::random::<u16>())
38 .set_message_type(MessageType::Query)
39 .add_query(
40 Query::query(domain_name, RecordType::A)
41)
42 .set_op_code(OpCode::Query)
43 .set_recursion_desired(true);

We’re now in a position where we can meaningfully inspect the code. It has the follow-
ing structure:

 Parses command-line arguments
 Builds a DNS message using trust_dns types
 Converts the structured data into a stream of bytes
 Sends those bytes across the wire

After that, we need to accept the response from the server, decode the incoming
bytes, and print the result. Error handling remains relatively ugly, with many calls to
unwrap() and expect(). We’ll address that problem shortly in section 8.5. The end
process is a command-line application that’s quite simple.

Opcode An OpCode enum is, in some
sense, a subtype of Message-
Type. This is an extensibility
mechanism that allows future
functionality. For example, RFC
1035 defines the Query and
Status opcodes but others were
defined later. The Notify and
Update opcodes are defined by
RFC 1996 and RFC 2136, respec-
tively.

Defined in trust_dns::op::OpCode
pub enum OpCode {
 Query,
 Status,
 Notify,
 Update,
}

Listing 8.7 Constructing a DNS message in Rust

Table 8.1 Terms that are used in RFC 1035, the trust_dns crate, and listing 8.9, and how these
interlink (continued)

Term Definition Representation in code

A Message is a container for
queries (or answers). Generates a random

u16 number

Multiple queries can be
included in the same
message.

The equivalent
type for IPv6
addresses is
AAAA.

Requests that the
DNS server asks
other DNS servers
if it doesn’t know
the answer

265TCP
 Running our resolve application involves little ceremony. Given a domain name, it
provides an IP address:

$ resolve www.rustinaction.com 35.185.44.232

Listings 8.8 and 8.9 are the project’s source code. While you are experimenting with
the project, you may want to use some features of cargo run to speed up your process:

$ cargo run -q -- www.rustinaction.com
35.185.44.232

To compile the resolve application from the official source code repository, execute
these commands in the console:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
Cloning into 'rust-in-action'...

$ cd rust-in-action/ch8/ch8-resolve

$ cargo run -q -- www.rustinaction.com
35.185.44.232

To compile and build from scratch, follow these instructions to establish the project
structure:

1 At the command-line, enter these commands:

$ cargo new resolve
 Created binary (application) `resolve` package

$ cargo install cargo-edit
...

$ cd resolve

$ cargo add rand@0.6
 Updating 'https:/ /github.com/rust-lang/crates.io-index' index
 Adding rand v0.6 to dependencies

$ cargo add clap@2
 Updating 'https:/ /github.com/rust-lang/crates.io-index' index
 Adding rand v2 to dependencies

$ cargo add trust-dns@0.16 --no-default-features
 Updating 'https:/ /github.com/rust-lang/crates.io-index' index
 Adding trust-dns v0.16 to dependencies

2 Once the structure has been established, you check that your Cargo.toml
matches listing 8.8, available in ch8/ch8-resolve/Cargo.toml.

3 Replace the contents of src/main.rs with listing 8.9. It is available from ch8/
ch8-resolve/src/main.rs.

Sends arguments to the right of -- to the
executable it compiles. The -q option
mutes any intermediate output.

It may take a while to download the
project’s dependencies and compile
the code. The -q flag mutes
intermediate output. Adding two
dashes (--) sends further arguments
to the compiled executable.

266 CHAPTER 8 Networking
The following snippet provides a view of how the files of the project and the listings
are interlinked:

ch8-resolve
├── Cargo.toml
└── src
 └── main.rs

[package]
name = "resolve"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
rand = "0.6"
clap = "2.33"
trust-dns = { version = "0.16", default-features = false }

 1 use std::net::{SocketAddr, UdpSocket};
 2 use std::time::Duration;
 3
 4 use clap::{App, Arg};
 5 use rand;
 6 use trust_dns::op::{Message, MessageType, OpCode, Query};
 7 use trust_dns::rr::domain::Name;
 8 use trust_dns::rr::record_type::RecordType;
 9 use trust_dns::serialize::binary::*;
10
11 fn main() {
12 let app = App::new("resolve")
13 .about("A simple to use DNS resolver")
14 .arg(Arg::with_name("dns-server").short("s").default_value("1.1.1.1"))
15 .arg(Arg::with_name("domain-name").required(true))
16 .get_matches();
17
18 let domain_name_raw = app
19 .value_of("domain-name").unwrap();
20 let domain_name =
21 Name::from_ascii(&domain_name_raw).unwrap();
22
23 let dns_server_raw = app
24 .value_of("dns-server").unwrap();
25 let dns_server: SocketAddr =
26 format!("{}:53", dns_server_raw)
27 .parse()
28 .expect("invalid address");
29

Listing 8.8 Crate metadata for the resolve app

Listing 8.9 A command-line utility to resolve IP addresses from hostnames

See listing 8.8

See listing 8.9

Converts the command-
line argument to a typed
domain name

Converts the command-
line argument to a typed
DNS server

267TCP
30 let mut request_as_bytes: Vec<u8> =
31 Vec::with_capacity(512);
32 let mut response_as_bytes: Vec<u8> =
33 vec![0; 512];
34
35 let mut msg = Message::new();
36 msg
37 .set_id(rand::random::<u16>())
38 .set_message_type(MessageType::Query)
39 .add_query(Query::query(domain_name, RecordType::A))
40 .set_op_code(OpCode::Query)
41 .set_recursion_desired(true);
42
43 let mut encoder =
44 BinEncoder::new(&mut request_as_bytes);
45 msg.emit(&mut encoder).unwrap();
46
47 let localhost = UdpSocket::bind("0.0.0.0:0")
48 .expect("cannot bind to local socket");
49 let timeout = Duration::from_secs(3);
50 localhost.set_read_timeout(Some(timeout)).unwrap();
51 localhost.set_nonblocking(false).unwrap();
52
53 let _amt = localhost
54 .send_to(&request_as_bytes, dns_server)
55 .expect("socket misconfigured");
56
57 let (_amt, _remote) = localhost
58 .recv_from(&mut response_as_bytes)
59 .expect("timeout reached");
60
61 let dns_message = Message::from_vec(&response_as_bytes)
62 .expect("unable to parse response");
63
64 for answer in dns_message.answers() {
65 if answer.record_type() == RecordType::A {
66 let resource = answer.rdata();
67 let ip = resource
68 .to_ip_addr()
69 .expect("invalid IP address received");
70 println!("{}", ip.to_string());
71 }
72 }
73 }

Listing 8.9 includes some business logic that deserves explaining. Lines 30–33, repeated
here, use two forms of initializing a Vec<u8>. Why?

30 let mut request_as_bytes: Vec<u8> =
31 Vec::with_capacity(512);
32 let mut response_as_bytes: Vec<u8> =
33 vec![0; 512];

An explanation of why two
forms of initializing are used
is provided after the listing.

Message represents
a DNS message,
which is a container
for queries and
other information
such as answers.

Specifies that this is a
DNS query, not a DNS
answer. Both have the
same representation
over the wire, but not
in Rust’s type system.

Converts the Message
type into raw bytes
with BinEncoder

0.0.0.0:0 means listen to
all addresses on a random
port. The OS selects the
actual port.

268 CHAPTER 8 Networking
Each form creates a subtly different outcome:

 Vec::with_capacity(512) creates a Vec<T> with length 0 and capacity 512.
 vec![0; 512] creates a Vec<T> with length 512 and capacity 512.

The underlying array looks the same, but the difference in length is significant.
Within the call to recv_from() at line 58, the trust-dns crate includes a check that
response_as_bytes has sufficient space. That check uses the length field, which
results in a crash. Knowing how to wriggle around with initialization can be handy for
satisfying an APIs’ expectations.

It’s time to recap. Our overall task in this section was to make HTTP requests. HTTP is
built on TCP. Because we only had a domain name (www.rustinaction.com) when we
made the request, we needed to use DNS. DNS is primarily delivered over UDP, so we
needed to take a diversion and learn about UDP.

 Now it’s almost time to return to TCP. Before we’re able to do that, though, we
need to learn how to combine error types that emerge from multiple dependencies.

8.5 Ergonomic error handling for libraries
Rust’s error handling is safe and sophisticated. However, it offers a few challenges.
When a function incorporates Result types from two upstream crates, the ? opera-
tor no longer works because it only understands a single type. This proves to be
important when we refactor our domain resolution code to work alongside our TCP
code. This section discusses some of those challenges as well as strategies for manag-
ing them.

How DNS supports connections within UDP
UDP does not have a notion of long-lived connections. Unlike TCP, all messages are
short-lived and one-way. Put another way, UDP does not support two-way (duplex)
communications. But DNS requires a response to be sent from the DNS server back
to the client.

To enable two-way communications within UDP, both parties must act as clients and
servers, depending on context. That context is defined by the protocol built on top of
UDP. Within DNS, the client becomes a DNS server to receive the server’s reply. The
following table provides a flow chart of the process.

Stage DNS client role DNS server role

Request sent from DNS client UDP client UDP server

Reply sent from DNS server UDP server UDP client

269Ergonomic error handling for libraries
8.5.1 Issue: Unable to return multiple error types

Returning a Result<T, E> works great when there is a single error type E. But things
become more complicated when we want to work with multiple error types.

TIP For single files, compile the code with rustc <filename> rather than
using cargo build. For example, if a file is named io-error.rs, then the shell
command is rustc io-error.rs && ./io-error[.exe].

To start, let’s look at a small example that covers the easy case of a single error type.
We’ll try to open a file that does not exist. When run, listing 8.10 prints a short mes-
sage in Rust syntax:

$ rustc ch8/misc/io-error.rs && ./io-error
Error: Os { code: 2, kind: NotFound, message: "No such file or directory" }

We won’t win any awards for user experience here, but we get a chance to learn a new
language feature. The following listing provides the code that produces a single error
type. You’ll find its source in ch8/misc/io-error.rs.

1 use std::fs::File;
2
3 fn main() -> Result<(), std::io::Error> {
4 let _f = File::open("invisible.txt")?;
5
6 Ok(())
7 }

Now, let’s introduce another error type into main(). The next listing produces a com-
piler error, but we’ll work through some options to get the code to compile. The code
for this listing is in ch8/misc/multierror.rs.

 1 use std::fs::File;
 2 use std::net::Ipv6Addr;
 3
 4 fn main() -> Result<(), std::io::Error> {
 5 let _f = File::open("invisible.txt")?;
 6
 7 let _localhost = "::1"
 8 .parse::<Ipv6Addr>()?;
 9
10 Ok(())
11 }

To compile listing 8.11, enter the ch8/misc directory and use rustc. This produces
quite a stern, yet helpful, error message:

Listing 8.10 A Rust program that always produces an I/O error

Listing 8.11 A function that attempts to return multiple Result types

File::open()
returns Result<(),
std::io::Error>.

"".parse::<Ipv6Addr>() returns Result<Ipv6Addr,
std::net::AddrParseError>.

270 CHAPTER 8 Networking
$ rustc multierror.rs
error[E0277]: `?` couldn't convert the error to `std::io::Error`
 --> multierror.rs:8:25
 |
4 | fn main() -> Result<(), std::io::Error> {
 | -------------------------- expected `std::io::Error`
 because of this
...
8 | .parse::<Ipv6Addr>()?;
 | ^ the trait `From<AddrParseError>`
 is not implemented for `std::io::Error`
 |
 = note: the question mark operation (`?`) implicitly performs a
 conversion on the error value using the `From` trait
 = help: the following implementations were found:
 <std::io::Error as From<ErrorKind>>
 <std::io::Error as From<IntoInnerError<W>>>
 <std::io::Error as From<NulError>>
 = note: required by `from`

error: aborting due to previous error

For more information about this error, try `rustc --explain E0277`.

The error message can be difficult to interpret if you don’t know what the question
mark operator (?) is doing. Why are there multiple messages about std::con-
vert::From? Well, the ? operator is syntactic sugar for the try! macro. try! performs
two functions:

 When it detects Ok(value), the expression evaluates to value.
 When Err(err) occurs, try!/? returns early after attempting to convert err to

the error type defined in the calling function.

In Rust-like pseudocode, the try! macro could be defined as

macro try {
 match expression {
 Result::Ok(val) => val,
 Result::Err(err) => {
 let converted = convert::From::from(err);
 return Result::Err(converted);
 }
 });
}

Looking at listing 8.11 again, we can see the try! macro in action as ?:

 4 fn main() -> Result<(), std::io::Error> {
 5 let _f = File::open("invisible.txt")?;
 6
 7 let _localhost = "::1"
 8 .parse::<Ipv6Addr>()?;

Uses val when an
expression matches
Result::Ok(val)

Converts err to the
outer function’s error
type when it matches
Result::Err(err) and
then returns early

Returns from the
calling function, not
the try! macro itself

File::open() returns
std::io::Error, so no
conversion is necessary.

"".parse() presents ? with a std::net::AddrParseError. We
don’t define how to convert std::net::AddrParseError
to std::io::Error, so the program fails to compile.

271Ergonomic error handling for libraries
 9
10 Ok(())
11 }

In addition to saving you from needing to use explicit pattern matching to extract the
value or return an error, the ? operator also attempts to convert its argument into an
error type if required. Because the signature of main is main() ? Result<(), std::io
::Error>, Rust attempts to convert the std::net::AddrParseError produced by
parse::<Ipv6Addr>() into a std::io::Error. Don’t worry, though; we can fix this!
Earlier, in section 8.3, we introduced trait objects. Now we’ll be able to put those to
good use.

 Using Box<dyn Error> as the error variant in the main() function allows us to prog-
ress. The dyn keyword is short for dynamic, implying that there is a runtime cost for
this flexibility. Running listing 8.12 produces this output:

$ rustc ch8/misc/traiterror.rs && ./traiterror
Error: Os { code: 2, kind: NotFound, message: "No such file or directory" }

I suppose it’s a limited form of progress, but progress nonetheless. We’ve circled back
to the error we started with. But we’ve passed through the compiler error, which is
what we wanted.

 Going forward, let’s look at listing 8.12. It implements a trait object in a return
value to simplify error handling when errors originate from multiple upstream crates.
You can find the source for this listing in ch8/misc/traiterror.rs.

 1 use std::fs::File;
 2 use std::error::Error;
 3 use std::net::Ipv6Addr;
 4
 5 fn main() -> Result<(), Box<dyn Error>> {
 6
 7 let _f = File::open("invisible.txt")?;
 8
 9 let _localhost = "::1"
10 .parse::<Ipv6Addr>()?
11
12 Ok(())
13 }

Wrapping trait objects in Box is necessary because their size (in bytes on the stack) is
unknown at compile time. In the case of listing 8.12, the trait object might originate
from either File::open() or "::1".parse(). What actually happens depends on the
circumstances encountered at runtime. A Box has a known size on the stack. Its raison
d’être is to point to things that don’t, such as trait objects.

Listing 8.12 Using a trait object in a return value

A trait object, Box<dyn
Error>, represents any type
that implements Error.

Error type is
std::io::Error

Error type is
std::net::AddrParseError

272 CHAPTER 8 Networking
8.5.2 Wrapping downstream errors by defining our own error type

The problem that we are attempting to solve is that each of our dependencies defines
its own error type. Multiple error types in one function prevent returning Result. The
first strategy we looked at was to use trait objects, but trait objects have a potentially
significant downside.

 Using trait objects is also known as type erasure. Rust is no longer aware that an
error has originated upstream. Using Box<dyn Error> as the error variant of a Result
means that the upstream error types are, in a sense, lost. The original errors are now
converted to exactly the same type.

 It is possible to retain the upstream errors, but this requires more work on our
behalf. We need to bundle upstream errors in our own type. When the upstream
errors are needed later (say, for reporting errors to the user), it’s possible to extract
these with pattern matching. Here is the process:

1 Define an enum that includes the upstream errors as variants.
2 Annotate the enum with #[derive(Debug)].
3 Implement Display.
4 Implement Error, which almost comes for free because we have implemented

Debug and Display.
5 Use map_err() in your code to convert the upstream error to your omnibus

error type.

NOTE You haven’t previously encountered the map_err() function. We’ll
explain what it does when we get there later in this section.

It’s possible to stop with the previous steps, but there’s an optional extra step that
improves the ergonomics. We need to implement std::convert::From to remove the
need to call map_err(). To begin, let’s start back with listing 8.11, where we know that
the code fails:

use std::fs::File;
use std::net::Ipv6Addr;

fn main() -> Result<(), std::io::Error> {
 let _f = File::open("invisible.txt")?;

 let _localhost = "::1"
 .parse::<Ipv6Addr>()?;

 Ok(())
}

This code fails because "".parse::<Ipv6Addr>() does not return a std::io::Error.
What we want to end up with is code that looks a little more like the following listing.

273Ergonomic error handling for libraries
 1 use std::fs::File;
 2 use std::io::Error;
 3 use std::net::AddrParseError;
 4 use std::net::Ipv6Addr;
 5
 6 enum UpstreamError{
 7 IO(std::io::Error),
 8 Parsing(AddrParseError),
 9 }
10
11 fn main() -> Result<(), UpstreamError> {
12 let _f = File::open("invisible.txt")?
13 .maybe_convert_to(UpstreamError);
14
15 let _localhost = "::1"
16 .parse::<Ipv6Addr>()?
17 .maybe_convert_to(UpstreamError);
18
19 Ok(())
20 }

DEFINE AN ENUM THAT INCLUDES THE UPSTREAM ERRORS AS VARIANTS

The first thing to do is to return a type that can hold the upstream error types. In
Rust, an enum works well. Listing 8.13 does not compile, but does do this step. We’ll
tidy up the imports slightly, though:

use std::io;
use std::net;

enum UpstreamError{
 IO(io::Error),
 Parsing(net::AddrParseError),
}

ANNOTATE THE ENUM WITH #[DERIVE(DEBUG)]
The next change is easy. It’s a single-line change—the best kind of change. To anno-
tate the enum, we’ll add #[derive(Debug)], as the following shows:

use std::io;
use std::net;

#[derive(Debug)]
enum UpstreamError{
 IO(io::Error),
 Parsing(net::AddrParseError),
}

IMPLEMENT STD::FMT::DISPLAY

We’ll cheat slightly and implement Display by simply using Debug. We know that this
is available to us because errors must define Debug. Here’s the updated code:

Listing 8.13 Hypothetical example of the kind of code we want to write

Brings upstream errors
into local scope

274 CHAPTER 8 Networking
use std::fmt;
use std::io;
use std::net;

#[derive(Debug)]
enum UpstreamError{
 IO(io::Error),
 Parsing(net::AddrParseError),
}

impl fmt::Display for UpstreamError {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 write!(f, "{:?}", self)
 }
}

IMPLEMENT STD::ERROR::ERROR

Here’s another easy change. To end up with the kind of code that we’d like to write,
let’s make the following change:

use std::error;
use std::fmt;
use std::io;
use std::net;

#[derive(Debug)]
enum UpstreamError{
 IO(io::Error),
 Parsing(net::AddrParseError),
}

impl fmt::Display for UpstreamError {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 write!(f, "{:?}", self)
 }
}

impl error::Error for UpstreamError { }

The impl block is—well, we can rely on default implementations provided by the com-
piler—especially terse. Because there are default implementations of every method
defined by std::error::Error, we can ask the compiler to do all of the work for us.

USE MAP_ERR()
The next fix is to add map_err() to our code to convert the upstream error to the omni-
bus error type. Back at listing 8.13, we wanted to have a main() that looks like this:

fn main() -> Result<(), UpstreamError> {
 let _f = File::open("invisible.txt")?
 .maybe_convert_to(UpstreamError);

 let _localhost = "::1"
 .parse::<Ipv6Addr>()?

Implements Display in terms
of Debug via the "{:?}" syntax

Brings the
std::error::Error trait
into local scope

Defers to default method
implementations. The compiler
will fill in the blanks.

275Ergonomic error handling for libraries
 .maybe_convert_to(UpstreamError);

 Ok(())
}

I can’t offer you that. I can, however, give you this:

fn main() -> Result<(), UpstreamError> {
 let _f = File::open("invisible.txt")
 .map_err(UpstreamError::IO)?;

 let _localhost = "::1"
 .parse::<Ipv6Addr>()
 .map_err(UpstreamError::Parsing)?;

 Ok(())
}

This new code works! Here’s how. The map_err() function maps an error to a func-
tion. (Variants of our UpstreamError enum can be used as functions here.) Note that
the ? operator needs to be at the end. Otherwise, the function can return before the
code has a chance to convert the error.

 Listing 8.14 provides the new code. When run, it produces this message to the
console:

$ rustc ch8/misc/wraperror.rs && ./wraperror
Error: IO(Os { code: 2, kind: NotFound, message: "No such file or directory" })

To retain type safety, we can use the new code in the following listing. You’ll find its
source in ch8/misc/wraperror.rs.

 1 use std::io;
 2 use std::fmt;
 3 use std::net;
 4 use std::fs::File;
 5 use std::net::Ipv6Addr;
 6
 7 #[derive(Debug)]
 8 enum UpstreamError{
 9 IO(io::Error),
10 Parsing(net::AddrParseError),
11 }
12
13 impl fmt::Display for UpstreamError {
14 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
15 write!(f, "{:?}", self)
16 }
17 }
18
19 impl error::Error for UpstreamError { }

Listing 8.14 Wrapping upstream errors in our own type

276 CHAPTER 8 Networking
20
21 fn main() -> Result<(), UpstreamError> {
22 let _f = File::open("invisible.txt")
23 .map_err(UpstreamError::IO)?;
24
25 let _localhost = "::1"
26 .parse::<Ipv6Addr>()
27 .map_err(UpstreamError::Parsing)?;
28
29 Ok(())
30 }

It’s also possible to remove the calls to map_err(). But to enable that, we need to
implement From.

IMPLEMENT STD::CONVERT::FROM TO REMOVE THE NEED TO CALL MAP_ERR()
The std::convert::From trait has a single required method, from(). We need two
impl blocks to enable our two upstream error types to be convertible. The following
snippet shows how:

impl From<io::Error> for UpstreamError {
 fn from(error: io::Error) -> Self {
 UpstreamError::IO(error)
 }
}

impl From<net::AddrParseError> for UpstreamError {
 fn from(error: net::AddrParseError) -> Self {
 UpstreamError::Parsing(error)
 }
}

Now the main() function returns to a simple form of itself:

fn main() -> Result<(), UpstreamError> {
 let _f = File::open("invisible.txt")?;
 let _localhost = "::1".parse::<Ipv6Addr>()?;

 Ok(())
}

The full code listing is provided in listing 8.15. Implementing From places the burden
of extra syntax on the library writer. It results in a much easier experience when using
your crate, simplifying its use by downstream programmers. You’ll find the source for
this listing in ch8/misc/wraperror2.rs.

 1 use std::io;
 2 use std::fmt;
 3 use std::net;

Listing 8.15 Implementing std::convert::From for our wrapper error type

277MAC addresses
 4 use std::fs::File;
 5 use std::net::Ipv6Addr;
 6
 7 #[derive(Debug)]
 8 enum UpstreamError{
 9 IO(io::Error),
10 Parsing(net::AddrParseError),
11 }
12
13 impl fmt::Display for UpstreamError {
14 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
15 write!(f, "{:?}", self) 1((CO20-1))
16 }
17 }
18
19 impl error::Error for UpstreamError { }
20
21 impl From<io::Error> for UpstreamError {
22 fn from(error: io::Error) -> Self {
23 UpstreamError::IO(error)
24 }
25 }
26
27 impl From<net::AddrParseError> for UpstreamError {
28 fn from(error: net::AddrParseError) -> Self {
29 UpstreamError::Parsing(error)
30 }
31 }
32
33 fn main() -> Result<(), UpstreamError> {
34 let _f = File::open("invisible.txt")?;
35 let _localhost = "::1".parse::<Ipv6Addr>()?;
36
37 Ok(())
38 }

8.5.3 Cheating with unwrap() and expect()

The final approach for dealing with multiple error types is to use unwrap() and
expect(). Now that we have the tools to handle multiple error types in a function, we
can continue our journey.

NOTE This is a reasonable approach when writing a main() function, but it
isn’t recommended for library authors. Your users don’t want their programs
to crash because of things outside of their control.

8.6 MAC addresses
Several pages ago in listing 8.9, you implemented a DNS resolver. That enabled con-
versions from a host name such as www.rustinaction.com to an IP address. Now we
have an IP address to connect to.

278 CHAPTER 8 Networking
 The internet protocol enables devices to contact each other via their IP addresses.
But that’s not all. Every hardware device also includes a unique identifier that’s inde-
pendent of the network it’s connected to. Why a second number? The answer is par-
tially technical and partially historical.

 Ethernet networking and the internet started life independently. Ethernet’s focus
was on local area networks (LANs). The internet was developed to enable communica-
tion between networks, and Ethernet is the addressing system understood by devices
that share a physical link (or a radio link in the case of WiFi, Bluetooth, and other
wireless technologies).

 Perhaps a better way to express this is that MAC (short for media access control)
addresses are used by devices that share electrons (figure 8.3). But there are a few
differences:

 IP addresses are hierarchical, but MAC addresses are not. Addresses appearing close
together numerically are not close together physically, or organizationally.

 MAC addresses are 48 bits (6 bytes) wide. IP addresses are 32 bits (4 bytes) wide for
IPv4 and 128 bits (16 bytes) for IPv6.

There are two forms of MAC addresses:

 Universally administered (or universal) addresses are set when devices are manufactured.
Manufacturers use a prefix assigned by the IEEE Registration Authority and a
scheme of their choosing for the remaining bits.

 Locally administered (or local) addresses allow devices to create their own MAC addresses
without registration. When setting a device’s MAC address yourself in software,
you should make sure that your address is set to the local form.

First byte transmitted

Local/universal flag
Unicast/multicast flag

Device
Local addresses

Universal addresses

Organization Device

Flags
Common fields

In Rust syntax, the layout
of a MAC address is
specified as [u8; 6].

The role of specific bits
changes according to
the local/universal flag.

Figure 8.3 In-memory layout for MAC addresses

279MAC addresses
MAC addresses have two modes: unicast and multicast. The transmission behavior for
these forms is identical. The distinction is made when a device makes a decision about
whether to accept a frame. A frame is a term used by the Ethernet protocol for a byte
slice at this level. Analogies to frame include a packet, wrapper, and envelope. Figure 8.4
shows this distinction.

Unicast addresses are intended to transport information between two points that
are in direct contact (say, between a laptop and a router). Wireless access points
complicate matters somewhat but don’t change the fundamentals. A multicast address
can be accepted by multiple recipients, whereas unicast has a single recipient. The
term unicast is somewhat misleading, though. Sending an Ethernet packet involves
more than two devices. Using a unicast address alters what devices do when they
receive packets but not which data is transmitted over the wire (or through the
radio waves).

8.6.1 Generating MAC addresses

When we begin talking about raw TCP in section 8.8, we’ll create a virtual hardware
device in listing 8.22. To convince anything to talk to us, we need to learn how to
assign our virtual device a MAC address. The macgen project in listing 8.17 generates

Unicast vs. multicast MAC addresses

>_
Sender includes

destination MAC

address in a frame.

Router broadcasts the

destination MAC

address to all devices

listening on the port

included in the frame.

Single device

accepts the frame.

Other devices

ignore the frame.

Although there are three outbound
arrows from the wireless access point,
there is only a single RF transmission.

Unicast Multicast

Multiple devices

may accept the

frame.

Transmission behavior is consistent in both modes. Receiving behavior is mode-specific.

Unicast/multicast is set in the least-significant

bit of the first transmitted byte in a MAC address.

What determines the mode?

When set to , the MAC1

address is multicast.

Figure 8.4 The differences between multicast and unicast MAC addresses

280 CHAPTER 8 Networking
the MAC addresses for us. The following listing shows the metadata for that project.
You can find its source in ch8/ch8-mac/Cargo.toml.

[package]
name = "ch8-macgen"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
rand = "0.7"

The following listing shows the macgen project, our MAC address generator. The
source code for this project is in the ch8/ch8-mac/src/main.rs file.

 1 extern crate rand;
 2
 3 use rand::RngCore;
 4 use std::fmt;
 5 use std::fmt::Display;
 6
 7 #[derive(Debug)]
 8 struct MacAddress([u8; 6]);
 9
10 impl Display for MacAddress {
11 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
12 let octet = &self.0;
13 write!(
14 f,
15 "{:02x}:{:02x}:{:02x}:{:02x}:{:02x}:{:02x}",
16 octet[0], octet[1], octet[2],
17 octet[3], octet[4], octet[5]
18)
19 }
20 }
21
22 impl MacAddress {
23 fn new() -> MacAddress {
24 let mut octets: [u8; 6] = [0; 6];
25 rand::thread_rng().fill_bytes(&mut octets);
26 octets[0] |= 0b_0000_0011;
27 MacAddress { 0: octets }
28 }
29
30 fn is_local(&self) -> bool {
31 (self.0[0] & 0b_0000_0010) == 0b_0000_0010
32 }
33
34 fn is_unicast(&self) -> bool {
35 (self.0[0] & 0b_0000_0001) == 0b_0000_0001

Listing 8.16 Crate metadata for the macgen project

Listing 8.17 Creating macgen, a MAC address generator

Uses the newtype pattern to
wrap a bare array without
any extra overhead

Converts each byte
to hexadecimal
notation

Sets the MAC
address to local
and unicast

281Implementing state machines with Rust’s enums
36 }
37 }
38
39 fn main() {
40 let mac = MacAddress::new();
41 assert!(mac.is_local());
42 assert!(mac.is_unicast());
43 println!("mac: {}", mac);
44 }

The code from listing 8.17 should feel legible. Line 25 contains some relatively
obscure syntax, though. octets[0] |= 0b_0000_0011 coerces the two flag bits described
at figure 8.3 to a state of 1. That designates every MAC address we generate as locally
assigned and unicast.

8.7 Implementing state machines with Rust’s enums
Another prerequisite for handling network messages is being able to define a state
machine. Our code needs to adapt to changes in connectivity.

 Listing 8.22 contains a state machine, implemented with a loop, a match, and a
Rust enum. Because of Rust’s expression-based nature, control flow operators also
return values. Every time around the loop, the state is mutated in place. The following
listing shows the pseudocode for how a repeated match on a enum works together.

enum HttpState {
 Connect,
 Request,
 Response,
}

loop {
 state = match state {
 HttpState::Connect if !socket.is_active() => {
 socket.connect();
 HttpState::Request
 }

 HttpState::Request if socket.may_send() => {
 socket.send(data);
 HttpState::Response
 }

 HttpState::Response if socket.can_recv() => {
 received = socket.recv();
 HttpState::Response
 }

 HttpState::Response if !socket.may_recv() => {
 break;
 }

Listing 8.18 Pseudocode for a state machine implementation

282 CHAPTER 8 Networking

the
tunne

m

 _ => state,
 }
}

More advanced methods to implement finite state machines do exist. This is the sim-
plest, however. We’ll make use of it in listing 8.22. Making use of an enum embeds the
state machine’s transitions into the type system itself.

 But we’re still at a level that is far too high! To dig deeper, we’re going to need to
get some assistance from the OS.

8.8 Raw TCP
Integrating with the raw TCP packets typically requires root/superuser access. The OS
starts to get quite grumpy when an unauthorized user asks to make raw network
requests. We can get around this (on Linux) by creating a proxy device that non-super
users are allowed to communicate with directly.

8.9 Creating a virtual networking device
To proceed with this section, you will need to create virtual networking hardware.
Using virtual hardware provides more control to freely assign IP and MAC addresses.
It also avoids changing your hardware settings, which could affect its ability to connect
to the network. To create a TAP device called tap-rust, execute the following com-
mand in your Linux console:

$ sudo \
> ip tuntap \
> add \
> mode tap \
> name tap-rust \
> user $USER

Don’t have Linux?
If you’re running another OS, there are many virtualization options available. Here are
a few:

 The Multipass project (https://multipass.run/) provides fast Ubuntu virtual
machines on macOS and Windows hosts.

 WSL, the Windows Subsystem for Linux (https://docs.microsoft.com/en-us/
windows/wsl/about), is another option to look into.

 Oracle VirtualBox (https://www.virtualbox.org/) is an open source project with
excellent support for many host operating systems.

Executes as the root user Tells ip that we’re
managing TUN/
TAP devices

Uses the add
subcommandUses

TUN
lling
ode

Gives your device
a unique name

Grants access to your
non-root user account

https://multipass.run/
https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
https://www.virtualbox.org/

283“Raw” HTTP
When successful, ip prints no output. To confirm that our tap-rust device was added,
we can use the ip tuntap list subcommand as in the following snippet. When exe-
cuted, you should see the tap-rust device in the list of devices in the output:

$ ip tuntap list
tap-rust: tap persist user

Now that we have created a networking device, we also need to allocate an IP address
for it and tell our system to forward packets to it. The following shows the commands
to enable this functionality:

$ sudo ip link set tap-rust up
$ sudo ip addr add 192.168.42.100/24 dev tap-rust

$ sudo iptables \
> -t nat\
> -A POSTROUTING \
> -s 192.168.42.0/24 \
> -j MASQUERADE

$ sudo sysctl net.ipv4.ip_forward=1

The following shows how to remove the device (once you have completed this chap-
ter) by using del rather than add:

$ sudo ip tuntap del mode tap name tap-rust

8.10 “Raw” HTTP
We should now have all the knowledge we need to take on the challenge of using
HTTP at the TCP level. The mget project (mget is short for manually get) spans list-
ings 8.20–8.23. It is a large project, but you’ll find it immensely satisfying to under-
stand and build. Each file provides a different role:

 main.rs (listing 8.20)—Handles command-line parsing and weaves together the
functionality provided by its peer files. This is where we combine the error types
using the process outlined in section 8.5.2.

 ethernet.rs (listing 8.21)—Generates a MAC address using the logic from listing 8.17
and converts between MAC address types (defined by the smoltcp crate) and
our own.

 http.rs (listing 8.22)—Carries out the work of interacting with the server to make
the HTTP request.

 dns.rs (listing 8.23)—Performs DNS resolution, which converts a domain name
to an IP address.

Establishes a network device
called tap-rust and activates it Assigns the IP address

192.168.42.100 to
the device

Enables internet packets to reach the source IP
address mask (-s 192.168.42.100/24) by appending
a rule (-A POSTROUTING) that dynamically maps IP
addresses to a device (-j MASQUERADE)

Instructs the kernel to enable
IPv4 packet forwarding

284 CHAPTER 8 Networking
NOTE The source code for these listings (and every code listing in the book)
is available from https://github.com/rust-in-action/code or https://www
.manning.com/books/rust-in-action.

It’s important to acknowledge that listing 8.22 was derived from the HTTP client exam-
ple within the smoltcp crate itself. whitequark (https://whitequark.org/) has built an
absolutely fantastic networking library. Here’s the file structure for the mget project:

ch8-mget
├── Cargo.toml
└── src
 ├── main.rs
 ├── ethernet.rs
 ├── http.rs
 └── dns.rs

To download and run the mget project from source control, execute these commands
at the command line:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
Cloning into 'rust-in-action'...

$ cd rust-in-action/ch8/ch8-mget

Here are the project setup instructions for those readers who enjoy doing things step
by step (with the output omitted).

1 Enter these commands at the command-line:

$ cargo new mget

$ cd mget

$ cargo install cargo-edit

$ cargo add clap@2

$ cargo add url@02

$ cargo add rand@0.7

$ cargo add trust-dns@0.16 --no-default-features

$ cargo add smoltcp@0.6 --features='proto-igmp proto-ipv4 verbose log'

2 Check that your project’s Cargo.toml matches listing 8.19.
3 Within the src directory, listing 8.20 becomes main.rs, listing 8.21 becomes eth-

ernet.rs, listing 8.22 becomes http.rs, and listing 8.23 becomes dns.rs.

See listing 8.19.

See listing 8.20.

See listing 8.21.

See listing 8.22.

See listing 8.23.

https://github.com/rust-in-action/code
https://www.manning.com/books/rust-in-action
https://www.manning.com/books/rust-in-action
https://www.manning.com/books/rust-in-action
https://whitequark.org/

285“Raw” HTTP
The following listing shows the metadata for mget. You’ll find its source code in the
ch8/ch8-mget/Cargo.toml file.

[package]
name = "mget"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
clap = "2"
rand = "0.7"
smoltcp = {
 version = "0.6",
 features = ["proto-igmp", "proto-ipv4", "verbose", "log"]
}
trust-dns = {
 version = "0.16",
 default-features = false
}
url = "2"

The following listing shows the command-line parsing for our project. You’ll find this
source in ch8/ch8-mget/src/main.rs.

 1 use clap::{App, Arg};
 2 use smoltcp::phy::TapInterface;
 3 use url::Url;
 4
 5 mod dns;
 6 mod ethernet;
 7 mod http;
 8
 9 fn main() {
10 let app = App::new("mget")
11 .about("GET a webpage, manually")
12 .arg(Arg::with_name("url").required(true))
13 .arg(Arg::with_name("tap-device").required(true))
14 .arg(
15 Arg::with_name("dns-server")
16 .default_value("1.1.1.1"),
17)
18 .get_matches();
19
20 let url_text = app.value_of("url").unwrap();
21 let dns_server_text =
22 app.value_of("dns-server").unwrap();
23 let tap_text = app.value_of("tap-device").unwrap();
24

Listing 8.19 Crate metadata for mget

Listing 8.20 mget command-line parsing and overall coordination

Provides
command-line
argument parsing

Selects a random
port number

Provides a TCP
implementation

Enables connecting
to a DNS server

Parses and validates URLs

Requires a URL to
download data from

Requires a TAP
networking
device to
connect with

Makes it possible for the user to
select which DNS server to use

Parses the command-line
arguments

286 CHAPTER 8 Networking
25 let url = Url::parse(url_text)
26 .expect("error: unable to parse <url> as a URL");
27
28 if url.scheme() != "http" {
29 eprintln!("error: only HTTP protocol supported");
30 return;
31 }
32
33 let tap = TapInterface::new(&tap_text)
34 .expect(
35 "error: unable to use <tap-device> as a \
36 network interface",
37);
38
39 let domain_name =
40 url.host_str()
41 .expect("domain name required");
42
43 let _dns_server: std::net::Ipv4Addr =
44 dns_server_text
45 .parse()
46 .expect(
47 "error: unable to parse <dns-server> as an \
48 IPv4 address",
49);
50
51 let addr =
52 dns::resolve(dns_server_text, domain_name)
53 .unwrap()
54 .unwrap();
55
56 let mac = ethernet::MacAddress::new().into();
57
58 http::get(tap, mac, addr, url).unwrap();
59
60 }

The following listing generates our MAC address and converts between MAC address
types defined by the smoltcp crate and our own. The code for this listing is in ch8/
ch8-mget/src/ethernet.rs.

 1 use rand;
 2 use std::fmt;
 3 use std::fmt::Display;
 4
 5 use rand::RngCore;
 6 use smoltcp::wire;
 7
 8 #[derive(Debug)]
 9 pub struct MacAddress([u8; 6]);
10

Listing 8.21 Ethernet type conversion and MAC address generation

Validates the
command-line
arguments

Converts the URL’s domain
name into an IP address
that we can connect to

Generates a
random unicode
MAC address

Makes the HTTP
GET request

287“Raw” HTTP
11 impl Display for MacAddress {
12 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
13 let octet = self.0;
14 write!(
15 f,
16 "{:02x}:{:02x}:{:02x}:{:02x}:{:02x}:{:02x}",
17 octet[0], octet[1], octet[2],
18 octet[3], octet[4], octet[5]
19)
20 }
21 }
22
23 impl MacAddress {
24 pub fn new() -> MacAddress {
25 let mut octets: [u8; 6] = [0; 6];
26 rand::thread_rng().fill_bytes(&mut octets);
27 octets[0] |= 0b_0000_0010;
28 octets[0] &= 0b_1111_1110;
29 MacAddress { 0: octets }
30 }
31 }
32
33 impl Into<wire::EthernetAddress> for MacAddress {
34 fn into(self) -> wire::EthernetAddress {
35 wire::EthernetAddress { 0: self.0 }
36 }
37 }

The following listing shows how to interact with the server to make the HTTP request.
The code for this listing is in ch8/ch8-mget/src/http.rs.

 1 use std::collections::BTreeMap;
 2 use std::fmt;
 3 use std::net::IpAddr;
 4 use std::os::unix::io::AsRawFd;
 5
 6 use smoltcp::iface::{EthernetInterfaceBuilder, NeighborCache, Routes};
 7 use smoltcp::phy::{wait as phy_wait, TapInterface};
 8 use smoltcp::socket::{SocketSet, TcpSocket, TcpSocketBuffer};
 9 use smoltcp::time::Instant;
 10 use smoltcp::wire::{EthernetAddress, IpAddress, IpCidr, Ipv4Address};
 11 use url::Url;
 12
 13 #[derive(Debug)]
 14 enum HttpState {
 15 Connect,
 16 Request,
 17 Response,
 18 }
 19
 20 #[derive(Debug)]
 21 pub enum UpstreamError {

Listing 8.22 Manually creating an HTTP request using TCP primitives

Generates
a random
number

Ensures that the local
address bit is set to 1

Ensures the unicast
bit is set to 0

288 CHAPTER 8 Networking
 22 Network(smoltcp::Error),
 23 InvalidUrl,
 24 Content(std::str::Utf8Error),
 25 }
 26
 27 impl fmt::Display for UpstreamError {
 28 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 29 write!(f, "{:?}", self)
 30 }
 31 }
 32
 33 impl From<smoltcp::Error> for UpstreamError {
 34 fn from(error: smoltcp::Error) -> Self {
 35 UpstreamError::Network(error)
 36 }
 37 }
 38
 39 impl From<std::str::Utf8Error> for UpstreamError {
 40 fn from(error: std::str::Utf8Error) -> Self {
 41 UpstreamError::Content(error)
 42 }
 43 }
 44
 45 fn random_port() -> u16 {
 46 49152 + rand::random::<u16>() % 16384
 47 }
 48
 49 pub fn get(
 50 tap: TapInterface,
 51 mac: EthernetAddress,
 52 addr: IpAddr,
 53 url: Url,
 54) -> Result<(), UpstreamError> {
 55 let domain_name = url.host_str().ok_or(UpstreamError::InvalidUrl)?;
 56
 57 let neighbor_cache = NeighborCache::new(BTreeMap::new());
 58
 59 let tcp_rx_buffer = TcpSocketBuffer::new(vec![0; 1024]);
 60 let tcp_tx_buffer = TcpSocketBuffer::new(vec![0; 1024]);
 61 let tcp_socket = TcpSocket::new(tcp_rx_buffer, tcp_tx_buffer);
 62
 63 let ip_addrs = [IpCidr::new(IpAddress::v4(192, 168, 42, 1), 24)];
 64
 65 let fd = tap.as_raw_fd();
 66 let mut routes = Routes::new(BTreeMap::new());
 67 let default_gateway = Ipv4Address::new(192, 168, 42, 100);
 68 routes.add_default_ipv4_route(default_gateway).unwrap();
 69 let mut iface = EthernetInterfaceBuilder::new(tap)
 70 .ethernet_addr(mac)
 71 .neighbor_cache(neighbor_cache)
 72 .ip_addrs(ip_addrs)
 73 .routes(routes)
 74 .finalize();
 75
 76 let mut sockets = SocketSet::new(vec![]);

289“Raw” HTTP
 77 let tcp_handle = sockets.add(tcp_socket);
 78
 79 let http_header = format!(
 80 "GET {} HTTP/1.0\r\nHost: {}\r\nConnection: close\r\n\r\n",
 81 url.path(),
 82 domain_name,
 83);
 84
 85 let mut state = HttpState::Connect;
 86 'http: loop {
 87 let timestamp = Instant::now();
 88 match iface.poll(&mut sockets, timestamp) {
 89 Ok(_) => {}
 90 Err(smoltcp::Error::Unrecognized) => {}
 91 Err(e) => {
 92 eprintln!("error: {:?}", e);
 93 }
 94 }
 95
 96 {
 97 let mut socket = sockets.get::<TcpSocket>(tcp_handle);
 98
 99 state = match state {
100 HttpState::Connect if !socket.is_active() => {
101 eprintln!("connecting");
102 socket.connect((addr, 80), random_port())?;
103 HttpState::Request
104 }
105
106 HttpState::Request if socket.may_send() => {
107 eprintln!("sending request");
108 socket.send_slice(http_header.as_ref())?;
109 HttpState::Response
110 }
111
112 HttpState::Response if socket.can_recv() => {
113 socket.recv(|raw_data| {
114 let output = String::from_utf8_lossy(raw_data);
115 println!("{}", output);
116 (raw_data.len(), ())
117 })?;
118 HttpState::Response
119 }
120
121 HttpState::Response if !socket.may_recv() => {
122 eprintln!("received complete response");
123 break 'http;
124 }
125 _ => state,
126 }
127 }
128
129 phy_wait(fd, iface.poll_delay(&sockets, timestamp))
130 .expect("wait error");
131 }

290 CHAPTER 8 Networking
132
133 Ok(())
134 }

And finally, the following listing performs the DNS resolution. The source for this list-
ing is in ch8/ch8-mget/src/dns.rs.

 1 use std::error::Error;
 2 use std::net::{SocketAddr, UdpSocket};
 3 use std::time::Duration;
 4
 5 use trust_dns::op::{Message, MessageType, OpCode, Query};
 6 use trust_dns::proto::error::ProtoError;
 7 use trust_dns::rr::domain::Name;
 8 use trust_dns::rr::record_type::RecordType;
 9 use trust_dns::serialize::binary::*;
 10
 11 fn message_id() -> u16 {
 12 let candidate = rand::random();
 13 if candidate == 0 {
 14 return message_id();
 15 }
 16 candidate
 17 }
 18
 19 #[derive(Debug)]
 20 pub enum DnsError {
 21 ParseDomainName(ProtoError),
 22 ParseDnsServerAddress(std::net::AddrParseError),
 23 Encoding(ProtoError),
 24 Decoding(ProtoError),
 25 Network(std::io::Error),
 26 Sending(std::io::Error),
 27 Receving(std::io::Error),
 28 }
 29
 30 impl std::fmt::Display for DnsError {
 31 fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 32 write!(f, "{:#?}", self)
 33 }
 34 }
 35
 36 impl std::error::Error for DnsError {}
 37
 38 pub fn resolve(
 39 dns_server_address: &str,
 40 domain_name: &str,
 41) -> Result<Option<std::net::IpAddr>, Box<dyn Error>> {
 42 let domain_name =
 43 Name::from_ascii(domain_name)
 44 .map_err(DnsError::ParseDomainName)?;
 45

Listing 8.23 Creating DNS queries to translate domain names to IP addresses

Falls back
to default
methods

291“Raw” HTTP
 46 let dns_server_address =
 47 format!("{}:53", dns_server_address);
 48 let dns_server: SocketAddr = dns_server_address
 49 .parse()
 50 .map_err(DnsError::ParseDnsServerAddress)?;
 51
 52 let mut request_buffer: Vec<u8> =
 53 Vec::with_capacity(64);
 54 let mut response_buffer: Vec<u8> =
 55 vec![0; 512];
 56
 57 let mut request = Message::new();
 58 request.add_query(
 59 Query::query(domain_name, RecordType::A)
 60);
 61
 62 request
 63 .set_id(message_id())
 64 .set_message_type(MessageType::Query)
 65 .set_op_code(OpCode::Query)
 66 .set_recursion_desired(true);
 67
 68 let localhost =
 69 UdpSocket::bind("0.0.0.0:0").map_err(DnsError::Network)?;
 70
 71 let timeout = Duration::from_secs(5);
 72 localhost
 73 .set_read_timeout(Some(timeout))
 74 .map_err(DnsError::Network)?;
 75
 76 localhost
 77 .set_nonblocking(false)
 78 .map_err(DnsError::Network)?;
 79
 80 let mut encoder = BinEncoder::new(&mut request_buffer);
 81 request.emit(&mut encoder).map_err(DnsError::Encoding)?;
 82
 83 let _n_bytes_sent = localhost
 84 .send_to(&request_buffer, dns_server)
 85 .map_err(DnsError::Sending)?;
 86
 87 loop {
 88 let (_b_bytes_recv, remote_port) = localhost
 89 .recv_from(&mut response_buffer)
 90 .map_err(DnsError::Receving)?;
 91
 92 if remote_port == dns_server {
 93 break;
 94 }
 95 }
 96
 97 let response =
 98 Message::from_vec(&response_buffer)
 99 .map_err(DnsError::Decoding)?;
100

Attempts to build the
internal data structures
using the raw text input

Because our DNS request
will be small, we only need a
little bit of space to hold it.

DNS over UDP uses a
maximum packet size
of 512 bytes.

DNS messages can hold
multiple queries, but here
we only use a single one.

Asks the DNS server to make
requests on our behalf if it
doesn’t know the answer

Binding to port 0 asks
the OS to allocate a
port on our behalf.

There is a small chance
another UDP message
will be received on our
port from some unknown
sender. To avoid that,
we ignore packets from
IP addresses that we
don’t expect.

292 CHAPTER 8 Networking
101 for answer in response.answers() {
102 if answer.record_type() == RecordType::A {
103 let resource = answer.rdata();
104 let server_ip =
105 resource.to_ip_addr().expect("invalid IP address received");
106 return Ok(Some(server_ip));
107 }
108 }
109
110 Ok(None)
111 }

mget is an ambitious project. It brings together all the threads from the chapter, is
dozens of lines long, and yet is less capable than the request::get(url) call we made
in listing 8.2. Hopefully it’s revealed several interesting avenues for you to explore.
Perhaps, surprisingly, there are several more networking layers to unwrap. Well done
for making your way through a lengthy and challenging chapter.

Summary
 Networking is complicated. Standard models such as OSIs are only partially

accurate.
 Trait objects allow for runtime polymorphism. Typically, programmers prefer

generics because trait objects incur a small runtime cost. However, this situation
is not always clear-cut. Using trait objects can reduce space because only a single
version of each function needs to be compiled. Fewer functions also benefits
cache coherence.

 Networking protocols are particular about which bytes are used. In general, you
should prefer using &[u8] literals (b"…") over &str literals ("...") to ensure
that you retain full control.

 There are three main strategies for handling multiple upstream error types
within a single scope:
– Create an internal wrapper type and implement From for each of the upstream

types
– Change the return type to make use of a trait object that implements std::

error:Error

– Use .unwrap() and its cousin .expect()
 Finite state machines can be elegantly modeled in Rust with an enum and a

loop. At each iteration, indicate the next state by returning the appropriate
enum variant.

 To enable two-way communications in UDP, each side of the conversation must
be able to act as a client and a server.

Time and timekeeping
In this chapter, you’ll produce an NTP (Network Time Protocol) client that requests
the current time from the world’s network of public time servers. It’s a fully func-
tioning client that can be included in your own computer’s boot process to keep it
in sync with the world.

 Understanding how time works within computers supports your efforts to build
resilient applications. The system clock jumps both backwards and forwards in time.
Knowing why this happens allows you to anticipate and prepare for that eventuality.

 Your computer also contains multiple physical and virtual clocks. It takes some
knowledge to understand the limitations of each and when these are appropriate.
Understanding the limitations of each should foster a healthy skepticism about
micro benchmarks and other time-sensitive code.

 Some of the hardest software engineering involves distributed systems that
need to agree on what the time is. If you have the resources of Google, then

This chapter covers
 Understanding how a computer keeps time

 How operating systems represent timestamps

 Synchronizing atomic clocks with the Network
Time Protocol (NTP)
293

294 CHAPTER 9 Time and timekeeping
you’re able to maintain a network atomic clock that provides a worldwide time syn-
chronization of 7 ms. The closest open source alternative is CockroachDB (https://
www.cockroachlabs.com/). It relies on the NTP, which can have a (worldwide) latency
of approximately dozens of milliseconds. But that doesn’t make it useless. When
deployed within a local network, NTP allows computers to agree on the time to within
a few milliseconds or less.

 On the Rust side of the equation, this chapter invests lots of time interacting with
the OS internals. You’ll become more confident with unsafe blocks and with using
raw pointers. Readers will become familiar with chrono, the de facto standard crate
for high-level time and clock operations.

9.1 Background
It’s easy to think that a day has 86,400 seconds (60 s × 60 min × 24 h = 86,400 s). But
the earth’s rotation isn’t quite that perfect. The length of each day fluctuates due to
tidal friction with the moon and other effects such as torque at the boundary of the
earth’s core and its mantle.

 Software does not tolerate these imperfections. Most systems assume that most sec-
onds have an equal duration. The mismatch presents several problems.

 In 2012, a large number of services—including high profile sites such as Reddit
and Mozilla’s Hadoop infrastructure—stopped functioning after a leap second was
added to their clocks. And, at times, clocks can go back in time (this chapter does not,
however, cover time travel). Few software systems are prepared for the same time-
stamp to appear twice. That makes it difficult to debug the logs. There are two options
for resolving this impasse:

 Keep the length of each second fixed. This is good for computers but irritating for
humans. Over time, “midday” drifts towards sunset or sunrise.

 Adjust the length of each year to keep the sun’s position relative to noon in the same place
from year to year. This is good for humans but sometimes highly irritating for
computers.

In practice, we can chose both options as we do in this chapter. The world’s atomic
clocks use their own time zone with fixed-length seconds, called TAI. Everything else
uses time zones that are periodically adjusted; these are called UTC.

 TAI is used by the world’s atomic clocks and maintains a fixed-length year. UTC
adds leap seconds to TAI about once every 18 months. In 1972, TAI and UTC were 10
seconds apart. By 2016, they had drifted to 36 seconds apart.

 In addition to the issues with earth’s fickle rotational speed, the physics of your
own computer make it challenging to keep accurate time. There are also (at least) two
clocks running on your system. One is a battery-powered device, called the real-time
clock. The other one is known as system time. System time increments itself based on
hardware interrupts provided by the computer’s motherboard. Somewhere in your
system, a quartz crystal is oscillating rapidly.

https://www.cockroachlabs.com/
https://www.cockroachlabs.com/

295Background
Dealing with hardware platforms without a real-time clock
The Raspberry Pi device does not include a battery-supported, real-time clock. When
the computer turns on, the system clock is set to epoch time. That it, it is set to the
number of elapsed seconds since 1 Jan 1970. During boot, it uses the NTP to identify
the current time.

What about situations where there is no network connection? This is the situation
faced by the Cacophony Project (https://cacophony.org.nz/), which develops devices
to support New Zealand’s native bird species by applying computer vision to accu-
rately identify pest species.

The main sensor of the device is a thermal imaging camera. Footage needs to be
annotated with accurate timestamps. To enable this, the Cacophony Project team
decided to add an additional real-time clock, Raspberry Pi Hat, to their custom board.
The following figure shows the internals of the prototype for the Cacophony Project’s
automated pest detection system.

Thermal imaging camera

Raspberry Pi

Cacophony Project Pi Hat

Real-time clock board

Real-time clock chip

https://cacophony.org.nz/

296 CHAPTER 9 Time and timekeeping
9.2 Sources of time
Computers can’t look at the clock on the wall to determine what time it is. They need
to figure it out by themselves. To explain how this happens, let’s consider how digital
clocks operate generally, then how computer systems operate given some difficult con-
straints, such as operating without power.

 Digital clocks consist of two main parts. The first part is some component that ticks
at regular intervals. The second part is a pair of counters. One counter increments as
ticks occur. The other increments as seconds occur. Determining “now” within digital
clocks means comparing the number of seconds against some predetermined starting
point. The starting point is known as the epoch.

 Embedded hardware aside, when your computer is turned off, a small battery-
powered clock continues to run. Its electric charge causes a quartz crystal to oscillate
rapidly. The clock measures those oscillations and updates its internal counters. In a
running computer, the CPU clock frequency becomes the source of regular ticks. A
CPU core operates at a fixed frequency.1 Inside the hardware, a counter can be accessed
via CPU instructions and/or by accessing predefined CPU registers.2

 Relying on a CPU’s clock can actually cause problems in niche scientific and other
high-accuracy domains, such as profiling an application’s behavior. When computers
use multiple CPUs, which is especially common in high performance computing,
each CPU has a slightly different clock rate. Moreover, CPUs perform out-of-order
execution. This means that it’s impossible for someone creating a benchmarking/
profiling software suite to know how long a function takes between two timestamps.
The CPU instructions requesting the current timestamp may have shifted.

9.3 Definitions
Unfortunately, this chapter needs to introduce some jargon:

 Absolute time—Describes the time that you would tell someone if they were to ask
for the time. Also referred to as wall clock time and calendar time.

 Real-time clock—A physical clock that’s embedded in the computer’s motherboard,
which keeps time when the power is off. It’s also known as the CMOS clock.

 System clock—The operating system’s view of the time. Upon boot, the OS takes
over timekeeping duties from the real-time clock.

All applications derive their idea of time from the system time. The system
clock experiences jumps, as it can be manually set to a different position. This
jumpiness can confuse some applications.

 Monotonically increasing—A clock that never provides the same time twice. This is
a useful property for a computer application because, among other advantages,

1 Dynamic adjustments to a CPU’s clock speed do occur in many processors to conserve power, but these hap-
pen infrequently enough from the point of view of the clock as to be insignificant.

2 For example, Intel-based processors support the RDTSC instruction, which stands for Read Time Stamp Counter.

297Encoding time
log messages will never have a repeated timestamp. Unfortunately, preventing
time adjustments means being permanently bound to the local clock’s skew.
Note that the system clock is not monotonically increasing.

 Steady clock—This clock provides two guarantees: its seconds are all equal length
and it is monotonically increasing. Values from steady clocks are unlikely to
align with the system clock’s time or absolute time. These typically start at 0
when computers boot up, then count upwards as an internal counter progresses.
Although potentially useless for knowing the absolute time, these are handy for
calculating the duration between two points in time.

 High accuracy—A clock is highly accurate if the length of its seconds are regular.
The difference between two clocks is known as skew. Highly accurate clocks have
little skew against the atomic clocks that are humanity’s best engineering effort
at keeping accurate time.

 High resolution—Provides accuracy down to 10 nanoseconds or below. High res-
olution clocks are typically implemented within CPU chips because there are
few devices that can maintain time at such high frequency. CPUs are able to do
this. Their units of work are measured in cycles, and cycles have the same dura-
tion. A 1 GHz CPU core takes 1 nanosecond to compute one cycle.

 Fast clock—A clock that takes little time to read the time. Fast clocks sacrifice
accuracy and precision for speed, however.

9.4 Encoding time
There are many ways to represent time within a computer. The typical approach is to
use a pair of 32-bit integers. The first counts the number of seconds that have elapsed.
The second represents a fraction of a second. The precision of the fractional part
depends on the device in question.

 The starting point is arbitrary. The most common epoch in UNIX-based systems
is 1 Jan 1970 UTC. Alternatives include 1 Jan 1900 (which happens to be used by
NTP), 1 Jan 2000 for more recent applications, and 1 Jan 1601 (which is the begin-
ning of the Gregorian calendar). Using fixed-width integers presents two key advan-
tages and two main challenges:

 Advantages include
– Simplicity—It’s easy to understand the format.
– Efficiency—Integer arithmetic is the CPU’s favorite activity.

 Disadvantages include
– Fixed-range—All fixed-integer types are finite, implying that time eventually

wraps around to 0 again.
– Imprecise—Integers are discrete, while time is continuous. Different systems

make different trade-offs relating to subsecond accuracy, leading to round-
ing errors.

298 CHAPTER 9 Time and timekeeping
It’s also important to note that the general approach is inconsistently implemented.
Here are some things seen in the wild to represent the seconds component:

 UNIX timestamps, a 32-bit integer, represents milliseconds since epoch (e.g.,
1 Jan 1970).

 MS Windows FILETIME structures (since Windows 2000), a 64-bit unsigned
integer, represents 100 nanosecond increments since 1 Jan 1601 (UTC).

 Rust community’s chronos crate, a 32-bit signed integer, implements NaiveTime
alongside an enum to represent time zones where appropriate.3

 time_t (meaning time type but also called simple time or calendar time) within the
C standard library (libc) varies:
– Dinkumware’s libc provides an unsigned long int (e.g., a 32-bit unsigned

integer).
– GNU’s libc includes a long int (e.g., a 32-bit signed integer).
– AVR’s libc uses a 32-bit unsigned integer, and its epoch begins at midnight,

1 January 2000 (UTC).

Fractional parts tend to use the same type as their whole-second counterparts, but this
isn’t guaranteed. Now, let’s take a peek a time zones.

9.4.1 Representing time zones

Time zones are political divisions, rather than technical ones. A soft consensus appears
to have been formed around storing another integer that represents the number of
seconds offset from UTC.

9.5 clock v0.1.0: Teaching an application how
to tell the time
To begin coding our NTP client, let’s start by learning how to read time. Figure 9.1
provides a quick overview of how an application does that.

3 chronos has relatively few quirks, but one of which is sneaking leap seconds into the nanoseconds field.

Application Operating systemlibc Hardware

What’s the time?

Oh, it’s 9:12 a.m
.

What’s the time?

Oh, it’s 9:12 a.m
.

What’s the time?

Oh, it’s 9:12 a.m
.

Figure 9.1 An application gets time information from the OS, usually functionally provided by the
system’s libc implementation.

299clock v0.1.1: Formatting timestamps to comply with ISO 8601 and email standards
Listing 9.2, which reads the system time in the local time zone, might almost feel too
small to be a full-fledged example. But running the code results in the current time-
stamp formatted according to the ISO 8601 standard. The following listing provides
its configuration. You’ll find the source for this listing in ch9/ch9-clock0/Cargo.toml.

[package]
name = "clock"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
chrono = "0.4"

The following listing reads and prints the system time. You’ll find the source code for
the listing in ch9/ch9-clock0/src/main.rs.

1 use chrono::Local;
2
3 fn main() {
4 let now = Local::now();
5 println!("{}", now);
6 }

In listing 9.2, there is a lot of complexity hidden by these eight lines of code. Much of it
will be peeled away during the course of the chapter. For now, it’s enough to know that
chrono::Local provides the magic. It returns a typed value, containing a time zone.

NOTE Interacting with timestamps that don’t include time zones or perform-
ing other forms of illegal time arithmetic results in the program refusing to
compile.

9.6 clock v0.1.1: Formatting timestamps to comply with
ISO 8601 and email standards
The application that we’ll create is called clock, which reports the current time. You’ll
find the full application in listing 9.7. Throughout the chapter, the application will be
incrementally enhanced to support setting the time manually and via NTP. For the
moment, however, the following code shows the result of compiling and running the
code from listing 9.8 and sending it the --use-standard timestamp flag.

$ cd ch9/ch9-clock1

$ cargo run -- --use-standard rfc2822
warning: associated function is never used: `set`
 --> src/main.rs:12:8

Listing 9.1 Crate configuration for listing 9.2

Listing 9.2 Reading the system time and printing it on the screen

Asks for the time in
the system’s local
time zone

300 CHAPTER 9 Time and timekeeping
 |
12 | fn set() -> ! {
 | ^^^
 |
 = note: `#[warn(dead_code)]` on by default
warning: 1 warning emitted
 Finished dev [unoptimized + debuginfo] target(s) in 0.01s
 Running `target/debug/clock --use-standard rfc2822`
Sat, 20 Feb 2021 15:36:12 +1300

9.6.1 Refactoring the clock v0.1.0 code to support a wider
architecture

It makes sense to spend a short period of time creating a scaffold for the larger appli-
cation that clock will become. Within the application, we’ll first make a small cosmetic
change. Rather than using functions to read the time and adjust it, we’ll use static
methods of a Clock struct. The following listing, an excerpt from listing 9.7, shows the
change from listing 9.2.

 2 use chrono::{DateTime};
 3 use chrono::{Local};
 4
 5 struct Clock;
 6
 7 impl Clock {
 8 fn get() -> DateTime<Local> {
 9 Local::now()
10 }
11
12 fn set() -> ! {
13 unimplemented!()
14 }
15 }

What on earth is the return type of set()? The exclamation mark (!) indicates to the
compiler that the function never returns (a return value is impossible). It’s referred to
as the Never type. If the unimplemented!() macro (or its shorter cousin todo!()) is
reached at runtime, then the program panics.

 Clock is purely acting as a namespace at this stage. Adding a struct now provides
some extensibility later on. As the application grows, it might become useful for
Clock to contain some state between calls or implement some trait to support new
functionality.

NOTE A struct with no fields is known as a zero-sized type or ZST. It does not
occupy any memory in the resulting application and is purely a compile-time
construct.

Listing 9.3 Reading the time from the local system clock

DateTime<Local> is a
DateTime with the Local
time zone information.

301clock v0.1.1: Formatting timestamps to comply with ISO 8601 and email standards
9.6.2 Formatting the time

This section looks at formatting the time as a UNIX timestamp or a formatted string
according to ISO 8601, RFC 2822, and RFC 3339 conventions. The following listing,
an excerpt from listing 9.7, demonstrates how to produce timestamps using the func-
tionality provided by chrono. The timestamps are then sent to stdout.

48 let now = Clock::get();
49 match std {
50 "timestamp" => println!("{}", now.timestamp()),
51 "rfc2822" => println!("{}", now.to_rfc2822()),
52 "rfc3339" => println!("{}", now.to_rfc3339()),
53 _ => unreachable!(),
54 }

Our clock application (thanks to chrono) supports three time formats—timestamp,
rfc2822, and rfc3339:

 timestamp—Formats the number of seconds since the epoch, also known as a
UNIX timestamp.

 rfc2822—Corresponds to RPC 2822 (https://tools.ietf.org/html/rfc2822), which
is how time is formatted within email message headers.

 rfc3339—Corresponds to RFC 3339 (https://tools.ietf.org/html/rfc3339). RFC
3339 formats time in a way that is more commonly associated with the ISO 8601
standard. However, ISO 8601 is a slightly stricter standard. Every RFC 3339-
compliant timestamp is an ISO 8601-compliant timestamp, but the inverse is
not true.

9.6.3 Providing a full command-line interface

Command-line arguments are part of the environment provided to an application
from its OS when it’s established. These are raw strings. Rust provides some support
for accessing the raw Vec<String> via std::env::args, but it can be tedious to
develop lots of parsing logic for moderately-sized applications.

 Our code wants to be able to validate certain input, such that the desired output
format is one that the clock app actually supports. But validating input tends to be irri-
tatingly complex. To avoid this frustration, clock makes use of the clap crate.

 There are two main types that are useful for getting started: clap::App and
clap::Arg. Each clap::Arg represents a command-line argument and the options
that it can represent. clap::App collects these into a single application. To support
the public API in table 9.1, the code in listing 9.5 uses three Arg structs that are wrapped
together within a single App.

 Listing 9.5 is an excerpt from listing 9.7. It demonstrates how to implement the
API presented in table 9.1 using clap.

Listing 9.4 Showing the methods used to format timestamps

https://tools.ietf.org/html/rfc2822
https://tools.ietf.org/html/rfc3339

302 CHAPTER 9 Time and timekeeping
18 let app = App::new("clock")
19 .version("0.1")
20 .about("Gets and (aspirationally) sets the time.")
21 .arg(
22 Arg::with_name("action")
23 .takes_value(true)
24 .possible_values(&["get", "set"])
25 .default_value("get"),
26)
27 .arg(
28 Arg::with_name("std")
29 .short("s")
30 .long("standard")
31 .takes_value(true)
32 .possible_values(&[
33 "rfc2822",
34 "rfc3339",
35 "timestamp",
36])
37 .default_value("rfc3339"),
38)
39 .arg(Arg::with_name("datetime").help(
40 "When <action> is 'set', apply <datetime>. \
41 Otherwise, ignore.",
42));
43
44 let args = app.get_matches();

Table 9.1 Usage examples for executing the clock application from the command line. Each command
needs to be supported by our parser.

Use Description Example output

clock Default usage. Prints the current
time.

2018-06-17T11:25:19...

clock get Provides a get action explicitly with
default formatting.

2018-06-17T11:25:19...

clock get --use-
standard timestamp

Provides a get action and a for-
matting standard.

1529191458

clock get -s timestamp Provides a get action and a for-
matting standard using shorter
notation.

1529191458

clock set <datetime> Provides a set action explicitly with
default parsing rules.

clock set --use-
standard timestamp
<datetime>

Provides a set action explicitly and
indicates that the input will be a
UNIX timestamp.

Listing 9.5 Using clap to parse command-line arguments

The backslash asks
Rust to escape the
newline and the
following
indentation.

303clock v0.1.1: Formatting timestamps to comply with ISO 8601 and email standards
clap automatically generates some usage documentation for our clock application on
your behalf. Using the --help option triggers its output.

9.6.4 clock v0.1.1: Full project

The following terminal session demonstrates the process of downloading and compil-
ing the clock v0.1.1 project from the public Git repository. It also includes a fragment
for accessing the --help option that is mentioned in the previous section:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action

$ cd rust-in-action/ch9/ch9-clock1

$ cargo build
...
 Compiling clock v0.1.1 (rust-in-action/ch9/ch9-clock1)
warning: associated function is never used: `set`
 --> src/main.rs:12:6
 |
12 | fn set() -> ! {
 | ^^^
 |
 = note: `#[warn(dead_code)]` on by default

warning: 1 warning emitted

$ cargo run -- --help
...
clock 0.1
Gets and sets (aspirationally) the time.

USAGE:
 clock.exe [OPTIONS] [ARGS]

FLAGS:
 -h, --help Prints help information
 -V, --version Prints version information

OPTIONS:
 -s, --use-standard <std> [default: rfc3339]
 [possible values: rfc2822,
 rfc3339, timestamp]

ARGS:
 <action> [default: get] [possible values: get, set]
 <datetime> When <action> is 'set', apply <datetime>.
 Otherwise, ignore.

$ target/debug/clock
2021-04-03T15:48:23.984946724+13:00

Creating the project step by step takes slightly more work. As clock v0.1.1 is a project
managed by cargo, it follows the standard structure:

This warning is
eliminated in
clock v0.1.2.

Arguments to the right
of -- are sent to the
resulting executable.

Executes the
target/debug/clock
executable directly

304 CHAPTER 9 Time and timekeeping
clock
├── Cargo.toml
└── src
 └── main.rs

To create it manually, follow these steps:

1 From the command-line, execute these commands:

$ cargo new clock
$ cd clock
$ cargo install cargo-edit
$ cargo add clap@2
$ cargo add chrono@0.4

2 Compare the contents of your project’s Cargo.toml file with listing 9.6. With the
exception of the authors field, these should match.

3 Replace the contents of src/main.rs with listing 9.7.

The next listing is the project’s Cargo.toml file. You’ll find it at ch9/ch9-clock1/
Cargo.toml. Following that is the project’s src/main.rs file, listing 9.7. Its source is in
ch9/ch9-clock1/src/main.rs.

[package]
name = "clock"
version = "0.1.1"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
chrono = "0.4"
clap = "2"

 1 use chrono::DateTime;
 2 use chrono::Local;
 3 use clap::{App, Arg};
 4
 5 struct Clock;
 6
 7 impl Clock {
 8 fn get() -> DateTime<Local> {
 9 Local::now()
10 }
11
12 fn set() -> ! {
13 unimplemented!()
14 }
15 }

Listing 9.6 Crate configuration for clock v0.1.1

Listing 9.7 Producing formatted dates from the command line, clock v0.1.1

See listing 9.6.

See listing 9.7.

305clock v0.1.2: Setting the time
16
17 fn main() {
18 let app = App::new("clock")
19 .version("0.1")
20 .about("Gets and (aspirationally) sets the time.")
21 .arg(
22 Arg::with_name("action")
23 .takes_value(true)
24 .possible_values(&["get", "set"])
25 .default_value("get"),
26)
27 .arg(
28 Arg::with_name("std")
29 .short("s")
30 .long("use-standard")
31 .takes_value(true)
32 .possible_values(&[
33 "rfc2822",
34 "rfc3339",
35 "timestamp",
36])
37 .default_value("rfc3339"),
38)
39 .arg(Arg::with_name("datetime").help(
40 "When <action> is 'set', apply <datetime>. \
41 Otherwise, ignore.",
42));
43
44 let args = app.get_matches();
45
46 let action = args.value_of("action").unwrap();
47 let std = args.value_of("std").unwrap();
48
49 if action == "set" {
50 unimplemented!()
51 }
52
53 let now = Clock::get();
54 match std {
55 "timestamp" => println!("{}", now.timestamp()),
56 "rfc2822" => println!("{}", now.to_rfc2822()),
57 "rfc3339" => println!("{}", now.to_rfc3339()),
58 _ => unreachable!(),
59 }
60 }

9.7 clock v0.1.2: Setting the time
Setting the time is complicated because each OS has its own mechanism for doing
so. This requires that we use OS-specific conditional compilation to create a cross-
portable tool.

Supplies a default value
to each argument via
default_value("get") and
default_value("rfc3339").
It’s safe to call unwrap()
on these two lines.

Aborts early as
we’re not ready to
set the time yet

306 CHAPTER 9 Time and timekeeping
9.7.1 Common behavior

Listing 9.11 provides two implementations of setting the time. These both follow a
common pattern:

1 Parsing a command-line argument to create a DateTime<FixedOffset> value.
The FixedOffset time zone is provided by chrono as a proxy for “whichever

time zone is provided by the user.” chrono doesn’t know at compile time which
time zone will be selected.

2 Converting the DateTime<FixedOffset> to a DateTime<Local> to enable time
zone comparisons.

3 Instantiating an OS-specific struct that’s used as an argument for the necessary
system call (system calls are function calls provided by the OS).

4 Setting the system’s time within an unsafe block. This block is required because
responsibility is delegated to the OS.

5 Printing the updated time.

WARNING This code uses functions to teleport the system’s clock to a differ-
ent time. This jumpiness can cause system instability.

Some applications expect monotonically increasing time. A smarter (but more com-
plex) approach is to adjust the length of a second for n seconds until the desired time
is reached. Functionality is implemented within the Clock struct that was introduced
in section 9.6.1.

9.7.2 Setting the time for operating systems that use libc

POSIX-compliant operating systems can have their time set via a call to settimeof-
day(), which is provided by libc. libc is the C Standard Library and has lots of historic
connections with UNIX operating systems. The C language, in fact, was developed to
write UNIX. Even today, interacting with a UNIX derivative involves using the tools pro-
vided by the C language. There are two mental hurdles required for Rust programmers
to understanding the code in listing 9.11, which we’ll address in the following sections:

 The arcane types provided by libc
 The unfamiliarity of providing arguments as pointers

LIBC TYPE NAMING CONVENTIONS

libc uses conventions for naming types that differ from Rust’s. libc does not use Pascal-
Case to denote a type, preferring to use lowercase. That is, where Rust would use
TimeVal, libc uses timeval. The convention changes slightly when dealing with type
aliases. Within libc, type aliases append an underscore followed by the letter t (_t) to
the type’s name. The next two snippets show some libc imports and the equivalent
Rust code for building those types.

 On line 64 of listing 9.8, you will encounter this line:

libc::{timeval, time_t, suseconds_t};

307clock v0.1.2: Setting the time

t is sou
from

comm
lin

has alr
been pa
It represents two type aliases and a struct definition. In Rust syntax, these are defined
like this:

#![allow(non_camel_case_types)]

type time_t = i64;
type suseconds_t = i64;

pub struct timeval {
 pub tv_sec: time_t,
 pub tv_usec: suseconds_t,
}

time_t represents the seconds that have elapsed since the epoch. suseconds_t rep-
resents the fractional component of the current second.

 The types and functions relating to timekeeping involve a lot of indirection. The code
is intended to be easy to implement, which means providing local implementors (hard-
ware designers) the opportunity to change aspects as their platforms require. The way this
is done is to use type aliases everywhere, rather than sticking to a defined integer type.

NON-WINDOWS CLOCK CODE

The libc library provides a handy function, settimeofday, which we’ll use in listing 9.8.
The project’s Cargo.toml file requires two extra lines to bring libc bindings into the
crate for non-Windows platforms:

[target.'cfg(not(windows))'.dependencies]
libc = "0.2"

The following listing, an extract from listing 9.11, shows how to set the time with C’s
standard library, libc. In the listing, we use Linux and BSD operating systems or other
similar ones.

62 #[cfg(not(windows))]
63 fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {
64 use libc::{timeval, time_t, suseconds_t};
65 use libc::{settimeofday, timezone }
66
67 let t = t.with_timezone(&Local);
68 let mut u: timeval = unsafe { zeroed() };
69
70 u.tv_sec = t.timestamp() as time_t;
71 u.tv_usec =
72 t.timestamp_subsec_micros() as suseconds_t;
73
74 unsafe {
75 let mock_tz: *const timezone = std::ptr::null();
76 settimeofday(&u as *const timeval, mock_tz);
77 }
78 }

Listing 9.8 Setting the time in a libc environment

You can add these two lines
to the end of the file.

rced
 the
and

e and
eady
rsed.

The timezone parameter of
settimeofday() appears to
be some sort of historic
accident. Non-null values
generate an error.

308 CHAPTER 9 Time and timekeeping
Makes OS-specific imports within the function to avoid polluting the global scope.
libc::settimeofday is a function that modifies the system clock, and suseconds_t,
time_t, timeval, and timezone are all types used to interact with it.

 This code cheekily, and probably perilously, avoids checking whether the settime-
ofday function is successful. It’s quite possible that it isn’t. That will be remedied in
the next iteration of the clock application.

9.7.3 Setting the time on MS Windows

The code for MS Windows is similar to its libc peers. It is somewhat wordier, as the
struct that sets the time has more fields than the second and subsecond part. The
rough equivalent of the libc library is called kernel32.dll, which is accessible after
including the winapi crate.

WINDOWS API INTEGER TYPES

Windows provides its own take on what to call integral types. This code only makes use
of the WORD type, but it can be useful to remember the two other common types that
have emerged since computers have used 16-bit CPUs. The following table shows how
integer types from kernel32.dll correspond to Rust types.

REPRESENTING TIME IN WINDOWS

Windows provides multiple time types. Within our clock application, however, we’re
mostly interested in SYSTEMTIME. Another type that is provided is FILETIME. The fol-
lowing table describes these types to avoid confusion.

Windows type Rust type Remarks

WORD u16 Refers to the width of a CPU “word” as it was when Windows was
initially created

DWORD u32 Double word

QWORD u64 Quadruple word

LARGE_INTEGER i64 A type defined as a crutch to enable 32-bit and 64-bit platforms to
share code

ULARGE_INTEGER u64 An unsigned version of LARGE_INTEGER

Windows type Rust type Remarks

SYSTEMTIME winapi::SYSTEMTIME Contains fields for the year, month, day of the week, day
of the month, hour, minute, second, and millisecond.

FILETIME winapi::FILETIME Analogous to libc::timeval. Contains second and
millisecond fields. Microsoft’s documentation warns
that on 64-bit platforms, its use can cause irritating
overflow bugs without finicky type casting, which is why
it’s not employed here.

309clock v0.1.2: Setting the time
WINDOWS CLOCK CODE

As the SYSTEMTIME struct contains many fields, generating one takes a little bit longer.
The following listing shows this construct.

19 #[cfg(windows)]
20 fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {
21 use chrono::Weekday;
22 use kernel32::SetSystemTime;
23 use winapi::{SYSTEMTIME, WORD};
24
25 let t = t.with_timezone(&Local);
26
27 let mut systime: SYSTEMTIME = unsafe { zeroed() };
28
29 let dow = match t.weekday() {
30 Weekday::Mon => 1,
31 Weekday::Tue => 2,
32 Weekday::Wed => 3,
33 Weekday::Thu => 4,
34 Weekday::Fri => 5,
35 Weekday::Sat => 6,
36 Weekday::Sun => 0,
37 };
38
39 let mut ns = t.nanosecond();
40 let mut leap = 0;
41 let is_leap_second = ns > 1_000_000_000;
42
43 if is_leap_second {
44 ns -= 1_000_000_000;
45 leap += 1;
46 }
47
48 systime.wYear = t.year() as WORD;
49 systime.wMonth = t.month() as WORD;
50 systime.wDayOfWeek = dow as WORD;
51 systime.wDay = t.day() as WORD;
52 systime.wHour = t.hour() as WORD;
53 systime.wMinute = t.minute() as WORD;
54 systime.wSecond = (leap + t.second()) as WORD;
55 systime.wMilliseconds = (ns / 1_000_000) as WORD;
56
57 let systime_ptr = &systime as *const SYSTEMTIME;
58
59 unsafe {
60 SetSystemTime(systime_ptr);
61 }
62 }

Listing 9.9 Setting the time using the Windows kernel32.dll API

The chrono::Datelike
trait provides the
weekday() method.
Microsoft’s developer
documentation provides
the conversion table.

As an implementation detail,
chrono represents leap seconds
by adding an extra second
within the nanoseconds field. To
convert the nanoseconds to
milliseconds as required by
Windows, we need to account
for this.

From the perspective of the Rust compiler,
giving something else direct access to memory
is unsafe. Rust cannot guarantee that the
Windows kernel will be well-behaved.

310 CHAPTER 9 Time and timekeeping
9.7.4 clock v0.1.2: The full code listing

clock v0.1.2 follows the same project structure as v0.1.1, which is repeated here. To
create platform-specific behavior, some adjustments are required to Cargo.toml.

clock
├── Cargo.toml
└── src
 └── main.rs

Listings 9.10 and 9.11 provide the full source code for the project. These are available
for download from ch9/ch9-clock0/Cargo.toml and ch9/ch9-clock0/src/main.rs,
respectively.

[package]
name = "clock"
version = "0.1.2"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
chrono = "0.4"
clap = "2"

[target.'cfg(windows)'.dependencies]
winapi = "0.2"
kernel32-sys = "0.2"

[target.'cfg(not(windows))'.dependencies]
libc = "0.2"

 1 #[cfg(windows)]
 2 use kernel32;
 3 #[cfg(not(windows))]
 4 use libc;
 5 #[cfg(windows)]
 6 use winapi;
 7
 8 use chrono::{DateTime, Local, TimeZone};
 9 use clap::{App, Arg};
 10 use std::mem::zeroed;
 11
 12 struct Clock;
 13
 14 impl Clock {
 15 fn get() -> DateTime<Local> {
 16 Local::now()
 17 }
 18

Listing 9.10 Crate configuration for listing 9.11

Listing 9.11 Cross-portable code for setting the system time

See listing 9.10.

See listing 9.11.

311clock v0.1.2: Setting the time
 19 #[cfg(windows)]
 20 fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {
 21 use chrono::Weekday;
 22 use kernel32::SetSystemTime;
 23 use winapi::{SYSTEMTIME, WORD};
 24
 25 let t = t.with_timezone(&Local);
 26
 27 let mut systime: SYSTEMTIME = unsafe { zeroed() };
 28
 29 let dow = match t.weekday() {
 30 Weekday::Mon => 1,
 31 Weekday::Tue => 2,
 32 Weekday::Wed => 3,
 33 Weekday::Thu => 4,
 34 Weekday::Fri => 5,
 35 Weekday::Sat => 6,
 36 Weekday::Sun => 0,
 37 };
 38
 39 let mut ns = t.nanosecond();
 40 let is_leap_second = ns > 1_000_000_000;
 41
 42 if is_leap_second {
 43 ns -= 1_000_000_000;
 44 }
 45
 46 systime.wYear = t.year() as WORD;
 47 systime.wMonth = t.month() as WORD;
 48 systime.wDayOfWeek = dow as WORD;
 49 systime.wDay = t.day() as WORD;
 50 systime.wHour = t.hour() as WORD;
 51 systime.wMinute = t.minute() as WORD;
 52 systime.wSecond = t.second() as WORD;
 53 systime.wMilliseconds = (ns / 1_000_000) as WORD;
 54
 55 let systime_ptr = &systime as *const SYSTEMTIME;
 56
 57 unsafe {
 58 SetSystemTime(systime_ptr);
 59 }
 60 }
 61
 62 #[cfg(not(windows))]
 63 fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {
 64 use libc::{timeval, time_t, suseconds_t};
 65 use libc::{settimeofday, timezone};
 66
 67 let t = t.with_timezone(&Local);
 68 let mut u: timeval = unsafe { zeroed() };
 69
 70 u.tv_sec = t.timestamp() as time_t;
 71 u.tv_usec =
 72 t.timestamp_subsec_micros() as suseconds_t;
 73

312 CHAPTER 9 Time and timekeeping
 74 unsafe {
 75 let mock_tz: *const timezone = std::ptr::null();
 76 settimeofday(&u as *const timeval, mock_tz);
 77 }
 78 }
 79 }
 80
 81 fn main() {
 82 let app = App::new("clock")
 83 .version("0.1.2")
 84 .about("Gets and (aspirationally) sets the time.")
 85 .after_help(
 86 "Note: UNIX timestamps are parsed as whole \
 87 seconds since 1st January 1970 0:00:00 UTC. \
 88 For more accuracy, use another format.",
 89)
 90 .arg(
 91 Arg::with_name("action")
 92 .takes_value(true)
 93 .possible_values(&["get", "set"])
 94 .default_value("get"),
 95)
 96 .arg(
 97 Arg::with_name("std")
 98 .short("s")
 99 .long("use-standard")
100 .takes_value(true)
101 .possible_values(&[
102 "rfc2822",
103 "rfc3339",
104 "timestamp",
105])
106 .default_value("rfc3339"),
107)
108 .arg(Arg::with_name("datetime").help(
109 "When <action> is 'set', apply <datetime>. \
110 Otherwise, ignore.",
111));
112
113 let args = app.get_matches();
114
115 let action = args.value_of("action").unwrap();
116 let std = args.value_of("std").unwrap();
117
118 if action == "set" {
119 let t_ = args.value_of("datetime").unwrap();
120
121 let parser = match std {
122 "rfc2822" => DateTime::parse_from_rfc2822,
123 "rfc3339" => DateTime::parse_from_rfc3339,
124 _ => unimplemented!(),
125 };
126
127 let err_msg = format!(
128 "Unable to parse {} according to {}",

313Improving error handling
129 t_, std
130);
131 let t = parser(t_).expect(&err_msg);
132
133 Clock::set(t)
134 }
135
136 let now = Clock::get();
137
138 match std {
139 "timestamp" => println!("{}", now.timestamp()),
140 "rfc2822" => println!("{}", now.to_rfc2822()),
141 "rfc3339" => println!("{}", now.to_rfc3339()),
142 _ => unreachable!(),
143 }
144 }

9.8 Improving error handling
Those readers who have dealt with operating systems before will probably be dismayed
at some of the code in section 9.7. Among other things, it doesn’t check to see
whether the calls to settimeofday() and SetSystemTime() were actually successful.

 There are multiple reasons why setting the time might fail. The most obvious one
is that the user who is attempting to set the time lacks permission to do so. The robust
approach is to have Clock::set(t) return Result. As that requires modifying two
functions that we have already spent some time explaining in depth, let’s introduce a
workaround that instead makes use of the operating system’s error reporting:

fn main() {
 // ...
 if action == "set" {
 // ...

 Clock::set(t);

 let maybe_error =
 std::io::Error::last_os_error();
 let os_error_code =
 &maybe_error.raw_os_error();

 match os_error_code {
 Some(0) => (),
 Some(_) => eprintln!("Unable to set the time: {:?}", maybe_error),
 None => (),
 }
 }
}

After calls to Clock::set(t), Rust happily talks to the OS via std::io::Error::last
_os_error(). Rust checks to see if an error code has been generated.

Deconstructs maybe_error, a Rust
type, to convert it into a raw i32
value that’s easy to match

Matching on a raw integer saves
importing an enum, but sacrifices
type safety. Production-ready code
shouldn’t cheat in this way.

314 CHAPTER 9 Time and timekeeping
9.9 clock v0.1.3: Resolving differences between clocks
with the Network Time Protocol (NTP)
Coming to a consensus about the correct time is known formally as clock synchroniza-
tion. There are multiple international standards for synchronizing clocks. This section
focuses on the most prominent one—the Network Time Protocol (NTP).

 NTP has existed since the mid-1980s, and it has proven to be very stable. Its on-wire
format has not changed in the first four revisions of the protocol, with backwards com-
patibility retained the entire time. NTP operates in two modes that can loosely be
described as always on and request/response.

 The always on mode allows multiple computers to work in a peer-to-peer fashion
to converge on an agreed definition of now. It requires a software daemon or service
to run constantly on each device, but it can achieve tight synchronization within
local networks.

 The request/response mode is much simpler. Local clients request the time via a
single message and then parse the response, keeping track of the elapsed time. The
client can then compare the original timestamp with the timestamp sent from the
server, alter any delays caused by network latency, and make any necessary adjust-
ments to move the local clock towards the server’s time.

 Which server should your computer connect to? NTP works by establishing a hier-
archy. At the center is a small network of atomic clocks. There are also national pools
of servers.

 NTP allows clients to request the time from computers that are closer to atomic
clocks. But that only gets us part of the way. Let’s say that your computer asks 10 com-
puters what they think the time is. Now we have 10 assertions about the time, and the
network lag will differ for each source!

9.9.1 Sending NTP requests and interpreting responses

Let’s consider a client-server situation where your computer wants to correct its own
time. For every computer that you check with—let’s call these time servers—there are
two messages:

 The message from your computer to each time server is the request.
 The reply is known as the response.

These two messages generate four time points. Note that these occur in serial:

 T1—The client’s timestamp for when the request was sent. Referred to as t1 in
code.

 T2—The time server’s timestamp for when the request was received. Referred
to as t2 in code.

 T3—The time server’s timestamp for when it sends its response. Referred to as
t3 in code.

 T4—The client’s timestamp for when the response was received. Referred to as
t4 in code.

315clock v0.1.3: Resolving differences between clocks with the Network Time Protocol (NTP)
The names T1–T4 are designated by the RFC 2030 specification. Figure 9.2 shows the
timestamps.

To see what this means in code, spend a few moments looking through the following
listing. Lines 2–12 deal with establishing a connection. Lines 14–21 produce T1–T4.

 1 fn ntp_roundtrip(
 2 host: &str,
 3 port: u16,
 4) -> Result<NTPResult, std::io::Error> {
 5 let destination = format!("{}:{}", host, port);
 6 let timeout = Duration::from_secs(1);
 7
 8 let request = NTPMessage::client();
 9 let mut response = NTPMessage::new();
10
11 let message = request.data;
12
13 let udp = UdpSocket::bind(LOCAL_ADDR)?;
14 udp.connect(&destination).expect("unable to connect");
15
16 let t1 = Utc::now();
17

Listing 9.12 Defining a function that sends NTP messages

Time

Local computer

Remote server

T2

T1 T4

T3

T2 T3T1

Outbound message Inbound message

T1 is the local computer's record of the time

when the first message is transmitted.

T1 is the local computer's record of the time

when the second message is received.

T2 and T3 are recorded by the remote server

at the time that the first message is received

and the time that the second message is sent.

T1 is specified
but not needed
in practice.

Header that identifies
the message as request
for the time

T1, T2, and T3 are
sent from the server.

Header identifies
the message as
a response

T1

Figure 9.2 Timestamps that are defined within the NTP standard

This code cheats slightly by not encoding t1 in the
outbound message. In practice, however, this works
perfectly well and requires fractionally less work.

316 CHAPTER 9 Time and timekeeping
18 udp.send(&message)?;
19 udp.set_read_timeout(Some(timeout))?;
20 udp.recv_from(&mut response.data)?;
21
22 let t4 = Utc::now();
23
24 let t2: DateTime<Utc> =
25 response
26 .rx_time()
27 .unwrap()
28 .into();
29
30 let t3: DateTime<Utc> =
31 response
32 .tx_time()
33 .unwrap()
34 .into();
35
36 Ok(NTPResult {
37 t1: t1,
38 t2: t2,
39 t3: t3,
40 t4: t4,
41 })
42 }

T1–T4, encapsulated in listing 9.12 as NTPResult, are all that’s required to judge
whether the local time matches the server’s time. The protocol contains more related
to error handling, but that’s avoided here for simplicity. Otherwise, it’s a perfectly
capable NTP client.

9.9.2 Adjusting the local time as a result of the server’s response

Given that our client has received at least one (and hopefully a few more) NTP
responses, all that’s left to do is to calculate the “right” time. But wait, which time is
right? All we have are relative timestamps. There is still no universal “truth” that we’ve
been given access to.

NOTE For those readers who don’t enjoy Greek letters, feel free to skim or
even skip the next few paragraphs.

The NTP documentation provides two equations to help resolve the situation. Our
aim is to calculate two values. Table 9.2 shows the calculations.

 The time offset is what we’re ultimately interested in. It is denoted as  (theta) by the
official documentation. When  is a positive number, our clock is fast. When it
is negative, our clock is slow.

 The delay caused by network congestion, latency, and other noise. This is denoted as 
(delta). A large  implies that the reading is less reliable. Our code uses this
value to follow servers that respond quickly.

Sends a request payload (defined
elsewhere) to the server

Blocks the application until
data is ready to be received

rx_time() stands for received
timestamp and is the time
that the server received the
client’s message.

tx_time() stands for
transmitted timestamp
and is the time that the
server sent the reply.

317clock v0.1.3: Resolving differences between clocks with the Network Time Protocol (NTP)
The mathematics can be confusing because there is always an innate desire to know
what the time actually is. That’s impossible to know. All we have are assertions.

 NTP is designed to operate multiple times per day, with participants nudging their
clocks incrementally over time. Given sufficient adjustments,  tends to 0 while 
remains relatively stable.

 The standard is quite prescriptive about the formula to carry out the adjustments.
For example, the reference implementation of NTP includes some useful filtering to
limit the effect of bad actors and other spurious results. But we’re going to cheat.
We’ll just take a mean of the differences, weighted by 1 / 2. This aggressively penal-
izes slow servers. To minimize the likelihood of any negative outcomes:

 We’ll check the time with known “good” actors. In particular, we’ll use time servers
hosted by major OS vendors and other reliable sources to minimize the chances
of someone sending us a questionable result.

 No single result will affect the result too much. We’ll provide a cap of 200 ms on any
adjustments we make to the local time.

The following listing, an extract from listing 9.15, shows this process for multiple time
servers.

175 fn check_time() -> Result<f64, std::io::Error> {
176 const NTP_PORT: u16 = 123;
177
178 let servers = [
179 "time.nist.gov",
180 "time.apple.com",
181 "time.euro.apple.com",
182 "time.google.com",
183 "time2.google.com",
184 / /"time.windows.com",
185];
186
187 let mut times = Vec::with_capacity(servers.len());
188
189 for &server in servers.iter() {
190 print!("{} =>", server);
191
192 let calc = ntp_roundtrip(&server, NTP_PORT);

Table 9.2 How to calculate  and  in NTP

 = (T
4 – T1) – (T3 – T2) (T4 – T1) calculates the total time spent on the client’s side. (T3 – T2)

calculates the total time spent on the server’s side.

The distinction between the two differences (e.g., ), is an estimate of
the difference between the clocks, plus a delay caused by network traf-
fic and processing.

 = ((T2 – T1) + (T4 – T3)) / 2 We take the average of the two pairs of timestamps.

Listing 9.13 Adjusting the time according to the responses

Google’s time servers implement leap seconds
by expanding the length of a second rather than
adding an extra second. Thus, for one day
approximately every 18 months, this server
reports a different time than the others.

At the time of writing, Microsoft’s time server
provides a time that’s 15 s ahead of its peers.

318 CHAPTER 9 Time and timekeeping
193
194 match calc {
195 Ok(time) => {
196 println!(" {}ms away from local system time", time.offset());
197 times.push(time);
198 }
199 Err(_) => {
200 println!(" ? [response took too long]")
201 }
202 };
203 }
204
205 let mut offsets = Vec::with_capacity(servers.len());
206 let mut offset_weights = Vec::with_capacity(servers.len());
207
208 for time in × {
209 let offset = time.offset() as f64;
210 let delay = time.delay() as f64;
211
212 let weight = 1_000_000.0 / (delay * delay);
213 if weight.is_finite() {
214 offsets.push(offset);
215 offset_weights.push(weight);
216 }
217 }
218
219 let avg_offset = weighted_mean(&offsets, &offset_weights);
220
221 Ok(avg_offset)
222 }

9.9.3 Converting between time representations that use different
precisions and epochs

chrono represents the fractional part of a second, down to a nanosecond precision,
whereas NTP can represent times that differ by approximately 250 picoseconds. That’s
roughly four times more precise! The different internal representations used imply
that some accuracy is likely to be lost during conversions.

 The From trait is the mechanism for telling Rust that two types can be converted.
From provides the from() method, which is encountered early on in one’s Rust career
(in examples such as String::from("Hello, world!")).

 The next listing, a combination of three extracts from listing 9.15, provides imple-
mentations of the std::convert::From trait. This code enables the .into() calls on
lines 28 and 34 of listing 9.13.

19 const NTP_TO_UNIX_SECONDS: i64 = 2_208_988_800;

Listing 9.14 Converting between chrono::DateTime and NTP timestamps

Penalizes slow servers
by substantially
decreasing their
relative weights

Number of seconds between 1 Jan 1900
(the NTP epoch) and 1 Jan 1970 (the UNIX epoch)

319clock v0.1.3: Resolving differences between clocks with the Network Time Protocol (NTP)
22 #[derive(Default,Debug,Copy,Clone)]
23 struct NTPTimestamp {
24 seconds: u32,
25 fraction: u32,
26 }

52 impl From<NTPTimestamp> for DateTime<Utc> {
53 fn from(ntp: NTPTimestamp) -> Self {
54 let secs = ntp.seconds as i64 - NTP_TO_UNIX_SECONDS;
55 let mut nanos = ntp.fraction as f64;
56 nanos *= 1e9;
57 nanos /= 2_f64.powi(32);
58
59 Utc.timestamp(secs, nanos as u32)
60 }
61 }
62
63 impl From<DateTime<Utc>> for NTPTimestamp {
64 fn from(utc: DateTime<Utc>) -> Self {
65 let secs = utc.timestamp() + NTP_TO_UNIX_SECONDS;
66 let mut fraction = utc.nanosecond() as f64;
67 fraction *= 2_f64.powi(32);
68 fraction /= 1e9;
69
70 NTPTimestamp {
71 seconds: secs as u32,
72 fraction: fraction as u32,
73 }
74 }
75 }

From has a reciprocal peer, Into. Implementing From allows Rust to automatically gen-
erate an Into implementation on its own, except in advanced cases. In those cases, it’s
likely that developers already possess the knowledge required to implement Into
manually and so probably don’t need assistance here.

9.9.4 clock v0.1.3: The full code listing

The complete code listing for our clock application is presented in listing 9.15. Taken
in its full glory, the whole of the clock application can look quite large and imposing.
Hopefully, there is no new Rust syntax to digest within the listing. The source for this
listing is in ch9/ch9-clock3/src/main.rs.

 1 #[cfg(windows)]
 2 use kernel32;
 3 #[cfg(not(windows))]
 4 use libc;
 5 #[cfg(windows)]
 6 use winapi;
 7

Listing 9.15 Full listing for the command-line NTP client, clock

Our internal type
represents an NTP
timestamp.

You can implement
these conversions
using bit-shift
operations, but at
the expense of even
less readability.

320 CHAPTER 9 Time and timekeeping
 8 use byteorder::{BigEndian, ReadBytesExt};
 9 use chrono::{
 10 DateTime, Duration as ChronoDuration, TimeZone, Timelike,
 11 };
 12 use chrono::{Local, Utc};
 13 use clap::{App, Arg};
 14 use std::mem::zeroed;
 15 use std::net::UdpSocket;
 16 use std::time::Duration;
 17
 18 const NTP_MESSAGE_LENGTH: usize = 48;
 19 const NTP_TO_UNIX_SECONDS: i64 = 2_208_988_800;
 20 const LOCAL_ADDR: &'static str = "0.0.0.0:12300";
 21
 22 #[derive(Default, Debug, Copy, Clone)]
 23 struct NTPTimestamp {
 24 seconds: u32,
 25 fraction: u32,
 26 }
 27
 28 struct NTPMessage {
 29 data: [u8; NTP_MESSAGE_LENGTH],
 30 }
 31
 32 #[derive(Debug)]
 33 struct NTPResult {
 34 t1: DateTime<Utc>,
 35 t2: DateTime<Utc>,
 36 t3: DateTime<Utc>,
 37 t4: DateTime<Utc>,
 38 }
 39
 40 impl NTPResult {
 41 fn offset(&self) -> i64 {
 42 let duration = (self.t2 - self.t1) + (self.t4 - self.t3);
 43 duration.num_milliseconds() / 2
 44 }
 45
 46 fn delay(&self) -> i64 {
 47 let duration = (self.t4 - self.t1) - (self.t3 - self.t2);
 48 duration.num_milliseconds()
 49 }
 50 }
 51
 52 impl From<NTPTimestamp> for DateTime<Utc> {
 53 fn from(ntp: NTPTimestamp) -> Self {
 54 let secs = ntp.seconds as i64 - NTP_TO_UNIX_SECONDS;
 55 let mut nanos = ntp.fraction as f64;
 56 nanos *= 1e9;
 57 nanos /= 2_f64.powi(32);
 58
 59 Utc.timestamp(secs, nanos as u32)
 60 }
 61 }
 62

12 * 4 bytes (the width
of 12, 32-bit integers)

12300 is the
default port
for NTP.

321clock v0.1.3: Resolving differences between clocks with the Network Time Protocol (NTP)
 63 impl From<DateTime<Utc>> for NTPTimestamp {
 64 fn from(utc: DateTime<Utc>) -> Self {
 65 let secs = utc.timestamp() + NTP_TO_UNIX_SECONDS;
 66 let mut fraction = utc.nanosecond() as f64;
 67 fraction *= 2_f64.powi(32);
 68 fraction /= 1e9;
 69
 70 NTPTimestamp {
 71 seconds: secs as u32,
 72 fraction: fraction as u32,
 73 }
 74 }
 75 }
 76
 77 impl NTPMessage {
 78 fn new() -> Self {
 79 NTPMessage {
 80 data: [0; NTP_MESSAGE_LENGTH],
 81 }
 82 }
 83
 84 fn client() -> Self {
 85 const VERSION: u8 = 0b00_011_000;
 86 const MODE: u8 = 0b00_000_011;
 87
 88 let mut msg = NTPMessage::new();
 89
 90 msg.data[0] |= VERSION;
 91 msg.data[0] |= MODE;
 92 msg
 93 }
 94
 95 fn parse_timestamp(
 96 &self,
 97 i: usize,
 98) -> Result<NTPTimestamp, std::io::Error> {
 99 let mut reader = &self.data[i..i + 8];
100 let seconds = reader.read_u32::<BigEndian>()?;
101 let fraction = reader.read_u32::<BigEndian>()?;
102
103 Ok(NTPTimestamp {
104 seconds: seconds,
105 fraction: fraction,
106 })
107 }
108
109 fn rx_time(
110 &self
111) -> Result<NTPTimestamp, std::io::Error> {
112 self.parse_timestamp(32)
113 }
114
115 fn tx_time(
116 &self
117) -> Result<NTPTimestamp, std::io::Error> {

Underscores delimit the
NTP fields: leap indicator (2
bits), version (3 bits), and
mode (3 bits).

The first byte of every NTP
message contains three
fields, but we only need to
set two of these.

msg.data[0] is now equal to
0001_1011 (27 in decimal).

Takes a slice to
the first byte

RX stands
for receive.

TX stands for
transmit.

322 CHAPTER 9 Time and timekeeping
118 self.parse_timestamp(40)
119 }
120 }
121
122 fn weighted_mean(values: &[f64], weights: &[f64]) -> f64 {
123 let mut result = 0.0;
124 let mut sum_of_weights = 0.0;
125
126 for (v, w) in values.iter().zip(weights) {
127 result += v * w;
128 sum_of_weights += w;
129 }
130
131 result / sum_of_weights
132 }
133
134 fn ntp_roundtrip(
135 host: &str,
136 port: u16,
137) -> Result<NTPResult, std::io::Error> {
138 let destination = format!("{}:{}", host, port);
139 let timeout = Duration::from_secs(1);
140
141 let request = NTPMessage::client();
142 let mut response = NTPMessage::new();
143
144 let message = request.data;
145
146 let udp = UdpSocket::bind(LOCAL_ADDR)?;
147 udp.connect(&destination).expect("unable to connect");
148
149 let t1 = Utc::now();
150
151 udp.send(&message)?;
152 udp.set_read_timeout(Some(timeout))?;
153 udp.recv_from(&mut response.data)?;
154 let t4 = Utc::now();
155
156 let t2: DateTime<Utc> =
157 response
158 .rx_time()
159 .unwrap()
160 .into();
161 let t3: DateTime<Utc> =
162 response
163 .tx_time()
164 .unwrap()
165 .into();
166
167 Ok(NTPResult {
168 t1: t1,
169 t2: t2,
170 t3: t3,
171 t4: t4,
172 })

323clock v0.1.3: Resolving differences between clocks with the Network Time Protocol (NTP)
173 }
174
175 fn check_time() -> Result<f64, std::io::Error> {
176 const NTP_PORT: u16 = 123;
177
178 let servers = [
179 "time.nist.gov",
180 "time.apple.com",
181 "time.euro.apple.com",
182 "time.google.com",
183 "time2.google.com",
184 / /"time.windows.com",
185];
186
187 let mut times = Vec::with_capacity(servers.len());
188
189 for &server in servers.iter() {
190 print!("{} =>", server);
191
192 let calc = ntp_roundtrip(&server, NTP_PORT);
193
194 match calc {
195 Ok(time) => {
196 println!(" {}ms away from local system time", time.offset());
197 times.push(time);
198 }
199 Err(_) => {
200 println!(" ? [response took too long]")
201 }
202 };
203 }
204
205 let mut offsets = Vec::with_capacity(servers.len());
206 let mut offset_weights = Vec::with_capacity(servers.len());
207
208 for time in × {
209 let offset = time.offset() as f64;
210 let delay = time.delay() as f64;
211
212 let weight = 1_000_000.0 / (delay * delay);
213 if weight.is_finite() {
214 offsets.push(offset);
215 offset_weights.push(weight);
216 }
217 }
218
219 let avg_offset = weighted_mean(&offsets, &offset_weights);
220
221 Ok(avg_offset)
222 }
223
224 struct Clock;
225
226 impl Clock {
227 fn get() -> DateTime<Local> {

324 CHAPTER 9 Time and timekeeping
228 Local::now()
229 }
230
231 #[cfg(windows)]
232 fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {
233 use chrono::Weekday;
234 use kernel32::SetSystemTime;
235 use winapi::{SYSTEMTIME, WORD};
236
237 let t = t.with_timezone(&Local);
238
239 let mut systime: SYSTEMTIME = unsafe { zeroed() };
240
241 let dow = match t.weekday() {
242 Weekday::Mon => 1,
243 Weekday::Tue => 2,
244 Weekday::Wed => 3,
245 Weekday::Thu => 4,
246 Weekday::Fri => 5,
247 Weekday::Sat => 6,
248 Weekday::Sun => 0,
249 };
250
251 let mut ns = t.nanosecond();
252 let is_leap_second = ns > 1_000_000_000;
253
254 if is_leap_second {
255 ns -= 1_000_000_000;
256 }
257
258 systime.wYear = t.year() as WORD;
259 systime.wMonth = t.month() as WORD;
260 systime.wDayOfWeek = dow as WORD;
261 systime.wDay = t.day() as WORD;
262 systime.wHour = t.hour() as WORD;
263 systime.wMinute = t.minute() as WORD;
264 systime.wSecond = t.second() as WORD;
265 systime.wMilliseconds = (ns / 1_000_000) as WORD;
266
267 let systime_ptr = &systime as *const SYSTEMTIME;
268 unsafe {
269 SetSystemTime(systime_ptr);
270 }
271 }
272
273 #[cfg(not(windows))]
274 fn set<Tz: TimeZone>(t: DateTime<Tz>) -> () {
275 use libc::settimeofday;
276 use libc::{suseconds_t, time_t, timeval, timezone};
277
278 let t = t.with_timezone(&Local);
279 let mut u: timeval = unsafe { zeroed() };
280
281 u.tv_sec = t.timestamp() as time_t;
282 u.tv_usec = t.timestamp_subsec_micros() as suseconds_t;

325clock v0.1.3: Resolving differences between clocks with the Network Time Protocol (NTP)
283
284 unsafe {
285 let mock_tz: *const timezone = std::ptr::null();
286 settimeofday(&u as *const timeval, mock_tz);
287 }
288 }
289 }
290
291 fn main() {
292 let app = App::new("clock")
293 .version("0.1.3")
294 .about("Gets and sets the time.")
295 .after_help(
296 "Note: UNIX timestamps are parsed as whole seconds since 1st \
297 January 1970 0:00:00 UTC. For more accuracy, use another \
298 format.",
299)
300 .arg(
301 Arg::with_name("action")
302 .takes_value(true)
303 .possible_values(&["get", "set", "check-ntp"])
304 .default_value("get"),
305)
306 .arg(
307 Arg::with_name("std")
308 .short("s")
309 .long("use-standard")
310 .takes_value(true)
311 .possible_values(&["rfc2822", "rfc3339", "timestamp"])
312 .default_value("rfc3339"),
313)
314 .arg(Arg::with_name("datetime").help(
315 "When <action> is 'set', apply <datetime>. Otherwise, ignore.",
316));
317
318 let args = app.get_matches();
319
320 let action = args.value_of("action").unwrap();
321 let std = args.value_of("std").unwrap();
322
323 if action == "set" {
324 let t_ = args.value_of("datetime").unwrap();
325
326 let parser = match std {
327 "rfc2822" => DateTime::parse_from_rfc2822,
328 "rfc3339" => DateTime::parse_from_rfc3339,
329 _ => unimplemented!(),
330 };
331
332 let err_msg =
333 format!("Unable to parse {} according to {}", t_, std);
334 let t = parser(t_).expect(&err_msg);
335
336 Clock::set(t);
337

326 CHAPTER 9 Time and timekeeping
338 } else if action == "check-ntp" {
339 let offset = check_time().unwrap() as isize;
340
341 let adjust_ms_ = offset.signum() * offset.abs().min(200) / 5;
342 let adjust_ms = ChronoDuration::milliseconds(adjust_ms_ as i64);
343
344 let now: DateTime<Utc> = Utc::now() + adjust_ms;
345
346 Clock::set(now);
347 }
348
349 let maybe_error =
350 std::io::Error::last_os_error();
351 let os_error_code =
352 &maybe_error.raw_os_error();
353
354 match os_error_code {
355 Some(0) => (),
356 Some(_) => eprintln!("Unable to set the time: {:?}", maybe_error),
357 None => (),
358 }
359
360 let now = Clock::get();
361
362 match std {
363 "timestamp" => println!("{}", now.timestamp()),
364 "rfc2822" => println!("{}", now.to_rfc2822()),
365 "rfc3339" => println!("{}", now.to_rfc3339()),
366 _ => unreachable!(),
367 }
368 }

Summary
 Keeping track of elapsed time is difficult. Digital clocks ultimately rely on fuzzy

signals from analog systems.
 Representing time is difficult. Libraries and standards disagree about how much

precision is required and when to start.
 Establishing truth in a distributed system is difficult. Although we continually

deceive ourselves otherwise, there is no single arbiter of what time it is. The best
we can hope for is that all of the computers in our network are reasonably close
to each other.

 A struct with no fields is known as a zero-sized type or ZST. It does not occupy
any memory in the resulting application and is purely a compile-time construct.

 Creating cross-portable applications is possible with Rust. Adding platform-
specific implementations of functions requires the precise use of the cfg anno-
tation, but it can be done.

 When interfacing with external libraries, such as the API provided by the oper-
ating system (OS), a type conversion step is almost always required. Rust’s type
system does not extend to libraries that it did not create!

327Summary
 System calls are used to make function calls to the OS. This invokes a complex
interaction between the OS, the CPU, and the application.

 The Windows API typically uses verbose PascalCase identifiers, whereas operat-
ing systems from the POSIX tradition typically use terse lowercase identifiers.

 Be precise when making assumptions about the meaning of terms such as epoch
and time zone. There is often hidden context lurking beneath the surface.

 Time can go backwards. Never write an application that relies on monotonically
increasing time without ensuring that it requests a monotonically increasing
clock from the OS.

Processes, threads,
and containers
So far this book has almost completely avoided two fundamental terms of systems
programming: threads and processes. Instead, the book has used the single term:
program. This chapter expands our vocabulary.

 Processes, threads, and containers are abstractions created to enable multiple
tasks to be carried out at the same time. This enables concurrency. Its peer term, par-
allelism, means to make use of multiple physical CPU cores at the same time.

 Counterintuitively, it is possible to have a concurrent system on a single CPU
core. Because accessing data from memory and I/O take a long time, threads
requesting data can be set to a blocked state. Blocked threads are rescheduled when
their data is available.

 Concurrency, or doing multiple things at the same time, is difficult to introduce
into a computer program. Employing concurrency effectively involves both new
concepts and new syntax.

This chapter covers
 Concurrent programming in Rust

 How to distinguish processes, threads,
and containers

 Channels and message passing

 Task queues
328

329Anonymous functions
 The aim of this chapter is to give you the confidence to explore more advanced
material. You will have a solid understanding of the different tools that are available to
you as an applications programmer. This chapter exposes you to the standard library
and the well engineered crates crossbeam and rayon. It will enable you to use them,
though it won’t give you sufficient background to be able to implement your own con-
currency crates. The chapter follows the following structure:

 It introduces you to Rust’s closure syntax in section 10.1. Closures are also known as
anonymous functions and lambda functions. The syntax is important because
the standard library and many (perhaps all) external crates rely on that syntax
to provide support for Rust’s concurrency model.

 It provides a quick lesson on spawning threads in section 10.2. You’ll learn what a
thread is and how to create (spawn) those. You’ll also encounter a discussion of
why programmers are warned against spawning tens of thousands of threads.

 It distinguishes between functions and closures in section 10.3. Conflating these two
concepts can be a source of confusion for programmers new to Rust as these
are often indistinguishable in other languages.

 It follows with a large project in section 10.4. You’ll implement a multithreaded
parser and a code generator using multiple strategies. As a nice aside, you get to
create procedural art along the way.

 The chapter concludes with an overview of other forms of concurrency. This includes
processes and containers.

10.1 Anonymous functions
This chapter is fairly dense, so let’s get some points on the board quickly with some
basic syntax and practical examples. We’ll circle back to fill in a lot of the conceptual
and theoretical material.

 Threads and other forms of code that can run concurrently use a form of function
definition that we’ve avoided for the bulk of the book. Taking a look at it now, defin-
ing a function looks like this:

fn add(a: i32, b: i32) -> i32 {
 a + b
}

The (loosely) equivalent lambda function is

let add = |a,b| { a + b };

Lambda functions are denoted by the pair of vertical bars (|…|) followed by curly
brackets ({…}). The pair of vertical bars lets you define arguments. Lambda functions
in Rust can read variables from within their scope. These are closures.

 Unlike regular functions, lambda functions cannot be defined in global scope.
The following listing gets around this by defining one within its main(). It defines two

330 CHAPTER 10 Processes, threads, and containers
functions, a regular function and a lambda function, and then checks that these pro-
duce the same result.

fn add(a: i32, b: i32) -> i32 {
 a + b
}

fn main() {
 let lambda_add = |a,b| { a + b };

 assert_eq!(add(4,5), lambda_add(4,5));
}

When you run listing 10.1, it executes happily (and silently). Let’s now see how to put
this functionality to work.

10.2 Spawning threads
Threads are the primary mechanism that operating systems provide for enabling con-
current execution. Modern operating systems ensure that each thread has fair access
to the CPU. Understanding how to create threads (often referred to as spawning
treads) and understanding their impact are fundamental skills for programmers want-
ing to make use of multi-core CPUs.

10.2.1 Introduction to closures

To spawn a thread in Rust, we pass an anonymous function to std::thread::spawn().
As described in section 10.1, anonymous functions are defined with two vertical bars
to provide arguments and then curly brackets for the function’s body. Because
spawn() doesn’t take any arguments, you will typically encounter this syntax:

thread::spawn(|| {
 // ...
});

When the spawned thread wants to access variables that are defined in the parent’s
scope, called a capture, Rust often complains that captures must be moved into the clo-
sure. To indicate that you want to move ownership, anonymous functions take a move
keyword:

thread::spawn(move || {
 // ...
});

Why is move required? Closures spawned in subthreads can potentially outlive their
calling scope. As Rust will always ensure that accessing the data is valid, it requires

Listing 10.1 Defining two functions and checking the result

The move keyword allows the
anonymous function to access
variables from their wider scope.

331Spawning threads
ownership to move to the closure itself. Here are some guidelines for using captures
while you gain an understanding of how these work:

 To reduce friction at compile time, implement Copy.
 Values originating in outer scopes may need to have a static lifetime.
 Spawned subthreads can outlive their parents. That implies that ownership

should pass to the subthread with move.

10.2.2 Spawning a thread

A simple task waits, sleeping the CPU for 300 ms (milliseconds). If you have a 3 GHz
CPU, you’re getting it to rest for nearly 1 billion cycles. Those electrons will be very
relieved. When executed, listing 10.2 prints the total duration (in “wall clock” time) of
both executing threads. Here’s the output:

300.218594ms

 1 use std::{thread, time};
 2
 3 fn main() {
 4 let start = time::Instant::now();
 5
 6 let handler = thread::spawn(|| {
 7 let pause = time::Duration::from_millis(300);
 8 thread::sleep(pause.clone());
 9 });
10
11 handler.join().unwrap();
12
13 let finish = time::Instant::now();
14
15 println!("{:02?}", finish.duration_since(start));
16 }

If you had encountered multi-threaded programming before, you would have been
introduced to join on line 11. Using join is fairly common, but what does it mean?

 join is an extension of the thread metaphor. When threads are spawned, these are
said to have forked from their parent thread. To join threads means to weave these
back together again.

 In practice, join means wait for the other thread to finish. The join() function
instructs the OS to defer scheduling the calling thread until the other thread finishes.

10.2.3 Effect of spawning a few threads

In ideal settings, adding a second thread doubles the work we can do in the same
amount of time. Each thread can gets its work done independently. Reality is not
ideal, unfortunately. This has created a myth that threads are slow to create and bulky

Listing 10.2 Sleeping a subthread for 300 ms

332 CHAPTER 10 Processes, threads, and containers
to maintain. This section aims to dispel that myth. When used as intended, threads
perform very well.

 Listing 10.3 shows a program that measures the overall time taken for two
threads to perform the job that was carried out by a single thread in listing 10.2. If
adding threads take a long time, we would expect the duration of listing 10.3’s code
to be longer.

 As you’ll notice, there is a negligible impact from creating one or two threads. As
with listing 10.2, listing 10.3 prints almost the same output:

300.242328ms

The difference in these two runs on my computer was 0.24 ms. While by no means a
robust benchmark suite, it does indicate that spawning a thread isn’t a tremendous
performance hit.

 1 use std::{thread, time};
 2
 3 fn main() {
 4 let start = time::Instant::now();
 5
 6 let handler_1 = thread::spawn(move || {
 7 let pause = time::Duration::from_millis(300);
 8 thread::sleep(pause.clone());
 9 });
10
11 let handler_2 = thread::spawn(move || {
12 let pause = time::Duration::from_millis(300);
13 thread::sleep(pause.clone());
14 });
15
16 handler_1.join().unwrap();
17 handler_2.join().unwrap();
18
19 let finish = time::Instant::now();
20
21 println!("{:?}", finish.duration_since(start));
22 }

If you’ve had any exposure to the field before, you may have heard that threads “don’t
scale.” What does that mean?

 Every thread requires its own memory, and by implication, we’ll eventually exhaust
our system’s memory. Before that terminal point, though, thread creation begins to
trigger slowdowns in other areas. As the number of threads to schedule increases, the
OS scheduler’s work increases. When there are many threads to schedule, deciding
which thread to schedule next takes more time.

Listing 10.3 Creating two subthreads to perform work on our behalf

Versus 300.218594 ms
from listing 10.2

333Spawning threads
10.2.4 Effect of spawning many threads

Spawning threads is not free. It demands memory and CPU time. Switching between
threads also invalidates caches.

 Figure 10.1 shows the data generated by successive runs of listing 10.4. The vari-
ance stays quite tight until about 400 threads per batch. After that, there’s almost no
knowing how long a 20 ms sleep will take.

And, if you’re thinking that sleeping is not a representative workload, figure 10.2 shows
the next plot, which is even more telling. It asks each thread to enter a spin loop.

 Figure 10.2 provides features that are worth focusing in on briefly. First, for the
first seven or so batches, the spin loop version returned closer to 20 ms. The operating
system’s sleep functionality isn’t perfectly accurate, however. If you want to sleep
pause a thread for short amounts of time, or if your application is sensitive to timing,
use a spin loop.1

 Second, CPU-intensive multithreading doesn’t scale well past the number of physi-
cal cores. The benchmarking was performed on a 6-core CPU (the Intel i7-8750H)
with hyper-threading disabled. Figure 10.3 shows that as soon as the thread count
exceeds the core count, performance degrades quickly.

1 It’s also possible to use both: sleep for the bulk of the time and a spin loop towards the end.

20

30

40

50

60

70

80

90

100

110

120

0 100 200 300 400 500 600 700 800 900 1000

W
a
ll

c
lo

c
k
 t

im
e
 f

o
r

b
a
tc

h
 t

o
 r

e
tu

rn
 (

m
s
)

Threads spawned in batch

Figure 10.1 Duration needed to wait for threads to sleep 20 ms

334 CHAPTER 10 Processes, threads, and containers
0

100

200

300

400

500

0 100 200 300 400 500 600 700 800 900 1000

W
a
ll

c
lo

c
k
 t

im
e
 f

o
r

b
a

tc
h

 t
o

 r
e

tu
rn

 (
m

s
)

Threads spawned in batch

Figure 10.2 Comparing the time taken to wait for 20m using the sleep strategy (circles) versus
the spin lock strategy (plus symbols). This chart shows the differences that occur as hundreds of
threads compete.

0

10

20

30

40

50

0 5 10 15 20 25 30

W
a
ll

c
lo

c
k
 t
im

e
 f
o
r

b
a
tc

h
 t
o
 r

e
tu

rn
 (

m
s
)

Threads spawned in batch

+ + + + + + +

+

+ +

+

+ +

+

+
+

+

+ +

+

+
+

+

+

+

+

+

+ + +

Figure 10.3 Comparing the time taken to wait for 20m using the sleep strategy (circles) versus the
spin lock strategy (plus symbols). This chart shows the differences that occur as the number of
threads exceeds the number of CPU cores (6).

335Spawning threads
10.2.5 Reproducing the results

Now that we’ve seen the effects of threading, let’s look at the code that generated
the input data to the plots in figures 10.1–10.2. You are welcome to reproduce the
results. To do so, write the output of listings 10.4 and 10.5 to two files, and then ana-
lyze the resulting data.

 Listing 10.4, whose source code is available at c10/ch10-multijoin/src/main.rs,
suspends threads for 20 ms with a sleep. A sleep is a request to the OS that the thread
should be suspended until the time has passed. Listing 10.5, whose source code is
available at c10/ch10-busythreads/src/main.rs, uses the busy wait strategy (also
known as busy loop and spin loop) to pause for 20 ms.

 1 use std::{thread, time};
 2
 3 fn main() {
 4 for n in 1..1001 {
 5 let mut handlers: Vec<thread::JoinHandle<()>> = Vec::with_capacity(n);
 6
 7 let start = time::Instant::now();
 8 for _m in 0..n {
 9 let handle = thread::spawn(|| {
10 let pause = time::Duration::from_millis(20);
11 thread::sleep(pause);
12 });
13 handlers.push(handle);
14 }
15
16 while let Some(handle) = handlers.pop() {
17 handle.join();
18 }
19
20 let finish = time::Instant::now();
21 println!("{}\t{:02?}", n, finish.duration_since(start));
22 }
23 }

 1 use std::{thread, time};
 2
 3 fn main() {
 4 for n in 1..1001 {
 5 let mut handlers: Vec<thread::JoinHandle<()>> = Vec::with_capacity(n);
 6
 7 let start = time::Instant::now();
 8 for _m in 0..n {
 9 let handle = thread::spawn(|| {
10 let start = time::Instant::now();
11 let pause = time::Duration::from_millis(20);

Listing 10.4 Using thread::sleep to suspend threads for 20 ms

Listing 10.5 Using a spin loop waiting strategy

336 CHAPTER 10 Processes, threads, and containers
12 while start.elapsed() < pause {
13 thread::yield_now();
14 }
15 });
16 handlers.push(handle);
17 }
18
19 while let Some(handle) = handlers.pop() {
20 handle.join();
21 }
22
23 let finish = time::Instant::now();
24 println!("{}\t{:02?}", n, finish.duration_since(start));
25 }
26 }

The control flow we’ve chosen for lines 19–21 is slightly odd. Rather than iterating
through the handlers vector, we call pop() and then drain it. The following two snip-
pets compare the more familiar for loop (listing 10.6) with the control flow mecha-
nism that is actually employed (listing 10.7).

19 for handle in &handlers {
20 handle.join();
21 }

19 while let Some(handle) = handlers.pop() {
20 handle.join();
21 }

Why use the more complex control flow mechanism? It might help to remember that
once we join a thread back to the main thread, it ceases to exist. Rust won’t allow us to
retain a reference to something that doesn’t exist. Therefore, to call join() on a
thread handler within handlers, the thread handler must be removed from handlers.
That poses a problem. A for loop does not permit modifications to the data being
iterated over. Instead, the while loop allows us to repeatedly gain mutable access
when calling handlers.pop().

 Listing 10.8 provides a broken implementation of the spin loop strategy. It is bro-
ken because it uses the more familiar for loop control flow that was avoided in listing
10.5. You’ll find the source for this listing in c10/ch10-busythreads-broken/src/
main.rs. Its output follows the listing.

 1 use std::{thread, time};
 2

Listing 10.6 What we would expect to see in listing 10.5

Listing 10.7 Code that’s actually used in listing 10.5

Listing 10.8 Using a spin loop waiting strategy

337Spawning threads
 3 fn main() {
 4 for n in 1..1001 {
 5 let mut handlers: Vec<thread::JoinHandle<()>> = Vec::with_capacity(n);
 6
 7 let start = time::Instant::now();
 8 for _m in 0..n {
 9 let handle = thread::spawn(|| {
10 let start = time::Instant::now();
11 let pause = time::Duration::from_millis(20);
12 while start.elapsed() < pause {
13 thread::yield_now();
14 }
15 });
16 handlers.push(handle);
17 }
18
19 for handle in &handlers {
20 handle.join();
21 }
22
23 let finish = time::Instant::now();
24 println!("{}\t{:02?}", n, finish.duration_since(start));
25 }
26 }

Here is the output generated when attempting to compile listing 10.8:

$ cargo run -q
error[E0507]: cannot move out of `*handle` which is behind a
shared reference
 --> src/main.rs:20:13
 |
20 | handle.join();
 | ^^^^^^ move occurs because `*handle` has type
 `std::thread::JoinHandle<()>`, which does not implement the
 `Copy` trait

error: aborting due to previous error

For more information about this error, try `rustc --explain E0507`.
error: Could not compile `ch10-busythreads-broken`.

To learn more, run the command again with --verbose.

This error is saying that taking a reference isn’t valid here. That’s because multiple
threads might also be taking their own references to the underlying threads. And
those references need to be valid.

 Astute readers know that there is actually a simpler way to get around this problem
than what was used in listing 10.5. As the following listing shows, simply remove the
ampersand.

338 CHAPTER 10 Processes, threads, and containers
19 for handle in handlers {
20 handle.join();
21 }

What we’ve encountered is one of those rare cases where taking a reference to an
object causes more issues than using the object directly. Iterating over handlers
directly retains ownership. That pushes any concerns about shared access to the side,
and we can proceed as intended.

YIELDING CONTROL WITH THREAD::YIELD_NOW()
As a reminder, the busy loop within listing 10.5 includes some unfamiliar code,
repeated in the following listing. This section explains its significance.

14 while start.elapsed() < pause {
15 thread::yield_now();
16 }

std::thread::yield_now() is a signal to the OS that the current thread should be
unscheduled. This allows other threads to proceed while the current thread is still
waiting for the 20 ms to arrive. A downside to yielding is that we don’t know if we’ll be
able to resume at exactly 20 ms.

 An alternative to yielding is to use the function std::sync::atomic::spin_loop
_hint(). spin_loop_hint() avoids the OS; instead, it directly signals the CPU. A CPU
might use that hint to turn off functionality, thus saving power usage.

NOTE The spin_loop_hint() instruction is not present for every CPU. On
platforms that don’t support it, spin_loop_hint() does nothing.

10.2.6 Shared variables

In our threading benchmarks, we created pause variables in each thread. If you’re not
sure what I’m referring to, the following listing provides an excerpt from listing 10.5.

 9 let handle = thread::spawn(|| {
10 let start = time::Instant::now();
11 let pause = time::Duration::from_millis(20);
12 while start.elapsed() < pause {
13 thread::yield_now();
14 }
15 });

We want to be able to write something like the following listing. The source for this list-
ing is ch10/ch10-sharedpause-broken/src/main.rs.

Listing 10.9 What we could have used in listing 10.5

Listing 10.10 Showing the current thread-yielding execution

Listing 10.11 Emphasizing the needless creation of time::Duration instances

This variable doesn’t
need to be created
in each thread.

339Spawning threads
 1 use std::{thread,time};
 2
 3 fn main() {
 4 let pause = time::Duration::from_millis(20);
 5 let handle1 = thread::spawn(|| {
 6 thread::sleep(pause);
 7 });
 8 let handle2 = thread::spawn(|| {
 9 thread::sleep(pause);
10 });
11
12 handle1.join();
13 handle2.join();
14 }

If we run listing 10.12, we’ll receive a verbose—and surprisingly helpful—error message:

$ cargo run -q
error[E0373]: closure may outlive the current function, but it borrows
`pause`, which is owned by the current function
 --> src/main.rs:5:33
 |
5 | let handle1 = thread::spawn(|| {
 | ^^ may outlive borrowed value `pause`
6 | thread::sleep(pause);
 | ----- `pause` is borrowed here
 |
note: function requires argument type to outlive `'static`
 --> src/main.rs:5:19
 |
5 | let handle1 = thread::spawn(|| {
 | ___________________^
6 | | thread::sleep(pause);
7 | | });
 | |______^
help: to force the closure to take ownership of `pause` (and any other
references variables), use the `move` keyword
 |
5 | let handle1 = thread::spawn(move || {
 | ^^^^^^^

error[E0373]: closure may outlive the current function, but it borrows
`pause`, which is owned by the current function
 --> src/main.rs:8:33
 |
8 | let handle2 = thread::spawn(|| {
 | ^^ may outlive borrowed value `pause`
9 | thread::sleep(pause);
 | ----- `pause` is borrowed here
 |
note: function requires argument type to outlive `'static`
 --> src/main.rs:8:19

Listing 10.12 Attempting to share a variable in multiple subthreads

340 CHAPTER 10 Processes, threads, and containers
 |
8 | let handle2 = thread::spawn(|| {
 | ___________________^
9 | | thread::sleep(pause);
10| | });
 | |______^
help: to force the closure to take ownership of `pause` (and any other
referenced variables), use the `move` keyword
 |
8 | let handle2 = thread::spawn(move || {
 | ^^^^^^^

error: aborting due to 2 previous errors

For more information about this error, try `rustc --explain E0373`.
error: Could not compile `ch10-sharedpause-broken`.

To learn more, run the command again with --verbose.

The fix is to add the move keyword to where the closures are created, as hinted at in
section 10.2.1. The following listing adds the move keyword, which switches the clo-
sures to use move semantics. That, in turn, relies on Copy.

 1 use std::{thread,time};
 2
 3 fn main() {
 4 let pause = time::Duration::from_millis(20);
 5 let handle1 = thread::spawn(move || {
 6 thread::sleep(pause);
 7 });
 8 let handle2 = thread::spawn(move || {
 9 thread::sleep(pause);
10 });
11
12 handle1.join();
13 handle2.join();
14 }

The details of why this works are interesting. Be sure to read the following section to
learn those.

10.3 Differences between closures and functions
There are some differences between closures (|| {}) and functions (fn). The differ-
ences prevent closures and functions from being used interchangeably, which can
cause problems for learners.

 Closures and functions have different internal representations. Closures are anon-
ymous structs that implement the std::ops::FnOnce trait and potentially std::ops::Fn

Listing 10.13 Using a variable defined in a parent scope in multiple closures

341Procedurally generated avatars from a multithreaded parser and code generator
and std::ops::FnMut. Those structs are invisible in source code but contain any vari-
ables from the closure’s environment that are used inside it.

 Functions are implemented as function pointers. A function pointer is a pointer that
points to code, not data. Code, when used in this sense, is computer memory that has
been marked as executable. To complicate matters, closures that do not enclose any
variables from their environment are also function pointers.

10.4 Procedurally generated avatars from a multithreaded
parser and code generator
This section applies the syntax that we learned in section 10.2 to an application. Let’s
say that we want the users of our app to have unique pictorial avatars by default. One
approach for doing this is to take their usernames and the digest of a hash function,
and then use those digits as parameter inputs to some procedural generation logic.
Using this approach, everyone will have visually similar yet completely distinctive
default avatars.

 Our application creates parallax lines. It does this by using the characters within
the Base 16 alphabet as opcodes for a LOGO-like language.

Forcing the compiler to reveal the type of closure
The concrete type of a Rust closure is inaccessible as source code. The compiler cre-
ates it. To retrieve it, force a compiler error like this:

1 fn main() {
2 let a = 20;
3
4 let add_to_a = |b| { a + b };

5 add_to_a == ();
6 }

Among other errors, the compiler produces this one when attempting to compile the
snippet as /tmp/a-plus-b.rs:

$ rustc /tmp/a-plus-b.rs
error[E0369]: binary operation `==` cannot be applied to type
`[closure@/tmp/a-plus-b.rs:4:20: 4:33]`
 --> /tmp/a-plus-b.rs:6:14
 |
6 | add_to_a == ();
 | -------- ^^ -- ()
 | |
 | [closure@/tmp/a-plus-b.rs:4:20: 4:33]

error: aborting due to previous error

For more information about this error, try `rustc --explain E0369`.

Closures are values and can
be assigned to a variable.

A quick method to inspect a
value’s type, this attempts to
perform an illegal operation on
it. The compiler quickly reports
it as an error message.

342 CHAPTER 10 Processes, threads, and containers
10.4.1 How to run render-hex and its intended output

In this section, we’ll produce three variations. These will all be invoked in the same
way. The following listing demonstrates this. It also shows the output from invoking
our render-hex project (listing 10.18):

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
...

$ cd rust-in-action/ch10/ch10-render-hex

$ cargo run -- $(
> echo 'Rust in Action' |
> sha1sum |
> cut -f1 -d' '
>)
$ ls
5deaed72594aaa10edda990c5a5eed868ba8915e.svg Cargo.toml target
Cargo.lock src

$ cat 5deaed72594aaa10edda990c5a5eed868ba8915e.svg
<svg height="400" style='style="outline: 5px solid #800000;"'
viewBox="0 0 400 400" width="400" xmlns="http:/ /www.w3.org/2000/svg">
<rect fill="#ffffff" height="400" width="400" x="0" y="0"/>
<path d="M200,200 L200,400 L200,400 L200,400 L200,400 L200,400 L200,
400 L480,400 L120,400 L-80,400 L560,400 L40,400 L40,400 L40,400 L40,
400 L40,360 L200,200 L200,200 L200,200 L200,200 L200,200 L200,560 L200,
-160 L200,200 L200,200 L400,200 L400,200 L400,0 L400,0 L400,0 L400,0 L80,
0 L-160,0 L520,0 L200,0 L200,0 L520,0 L-160,0 L240,0 L440,0 L200,0"
fill="none" stroke="#2f2f2f" stroke-opacity="0.9" stroke-width="5"/>
<rect fill="#ffffff" fill-opacity="0.0" height="400" stroke="#cccccc"
stroke-width="15" width="400" x="0" y="0"/>
</svg>

Any stream of valid Base 16 bytes generates a unique image. The file generated from
echo 'Rust in Action' | sha256sum renders as shown in figure 10.4. To render SVG
files, open the file in a web browser or a vector image program such as Inkscape
(https://inkscape.org/).

10.4.2 Single-threaded render-hex overview

The render-hex project converts its input to an SVG file. The SVG file format suc-
cinctly describes drawings using mathematical operations. You can view the SVG file in
any web browser and many graphics packages. Very little of the program relates to
multithreading at this stage, so I’ll skip much of the details. The program has a simple
pipeline comprised of four steps:

1 Receives input from STDIN
2 Parses the input into operations that describe the movement of a pen across a

sheet of paper
3 Converts the movement operations into its SVG equivalent
4 Generates an SVG file

Generates some input from
the Base 16 alphabet
(e.g., 0-9 and A-F) The project creates a

filename that matches
the input data.

Inspects the output

https://inkscape.org/

343Procedurally generated avatars from a multithreaded parser and code generator
Why can’t we directly create path data from input? Splitting this process into two steps
allows for more transformations. This pipeline is managed directly within main().

 The following listing shows the main() function for render-hex (listing 10.18). It
parses the command-line arguments and manages the SVG generation pipeline.
You’ll find the source for this listing in ch10/ch10-render-hex/src/main.rs.

166 fn main() {
167 let args = env::args().collect::<Vec<String>>();
168 let input = args.get(1).unwrap();
169 let default = format!("{}.svg", input);
170 let save_to = args.get(2).unwrap_or(&default);
171
172 let operations = parse(input);
173 let path_data = convert(&operations);
174 let document = generate_svg(path_data);
175 svg::save(save_to, &document).unwrap();
176 }

Listing 10.14 The main() function of render-hex

Figure 10.4 The SHA256 digest of Rust in Action displayed as a diagram

Command-line
argument
parsing

SVG generation
pipeline

344 CHAPTER 10 Processes, threads, and containers

INPUT PARSING

Our job in this section is to convert hexadecimal digits to instructions for a virtual pen
that travels across a canvas. The Operation enum, shown in the following code snip-
pet, represents these instructions.

NOTE The term operation is used rather than instruction to avoid colliding
with the terminology used within the SVG specification for path drawing.

21 #[derive(Debug, Clone, Copy)]
22 enum Operation {
23 Forward(isize),
24 TurnLeft,
25 TurnRight,
26 Home,
27 Noop(usize),
28 }

To parse this code, we need to treat every byte as an independent instruction. Numer-
als are converted to distances, and letters change the orientation of the drawing:

123 fn parse(input: &str) -> Vec<Operation> {
124 let mut steps = Vec::<Operation>::new();
125 for byte in input.bytes() {
126 let step = match byte {
127 b'0' => Home,
128 b'1'..=b'9' => {
129 let distance = (byte - 0x30) as isize;
130 Forward(distance * (HEIGHT/10))
131 },
132 b'a' | b'b' | b'c' => TurnLeft,
133 b'd' | b'e' | b'f' => TurnRight,
134 _ => Noop(byte),
135 }
136 };
137 steps.push(step);
138 }
139 steps
140 }

INTERPRET INSTRUCTIONS

The Artist struct maintains the state of the diagram. Conceptually, the Artist is
holding a pen at the coordinates x and y and is moving it in the direction of heading:

49 #[derive(Debug)]
50 struct Artist {
51 x: isize,
52 y: isize,
53 heading: Orientation,
54 }

In ASCII, numerals start at
0x30 (48 in Base 10), so this
converts the u8 value of b'2' to
2. Performing this operation
on the whole range of u8
could cause a panic, but
we’re safe here, thanks to
the guarantee provided by
our pattern matching.

There’s plenty of opportunity
to add more instructions to
produce more elaborate
diagrams without increasing
the parsing complexity.

Although we don’t expect any illegal characters,
there may be some in the input stream. Using a
Noop operation allows us to decouple parsing
from producing output.

345Procedurally generated avatars from a multithreaded parser and code generator
To move, Artist implements several methods of the render-hex project, two of which
are highlighted in the following listing. Rust’s match expressions are used to suc-
cinctly refer to and modify internal state. You’ll find the source for this listing in ch10-
render-hex/src/main.rs.

70 fn forward(&mut self, distance: isize) {
71 match self.heading {
72 North => self.y += distance,
73 South => self.y -= distance,
74 West => self.x += distance,
75 East => self.x -= distance,
76 }
77 }
78
79 fn turn_right(&mut self) {
80 self.heading = match self.heading {
81 North => East,
82 South => West,
83 West => North,
84 East => South,
85 }
86 }

The convert() function in listing 10.16, an extract from the render-hex project (list-
ing 10.18), makes use of the Artist struct. Its role is to convert the Vec<Operation>
from parse() to a Vec<Command>. That output is used later to generate an SVG. As a
nod to the LOGO language, Artist is given the local variable name turtle. The
source for this listing is in ch10-render-hex/src/main.rs.

131 fn convert(operations: &Vec<Operation>) -> Vec<Command> {
132 let mut turtle = Artist::new();
133 let mut path_data: Vec<Command> = vec![];
134 let start_at_home = Command::Move(
135 Position::Absolute, (HOME_X, HOME_Y).into()
136);
137 path_data.push(start_at_home);
138
139 for op in operations {
140 match *op {
141 Forward(distance) => turtle.forward(distance),
142 TurnLeft => turtle.turn_left(),
143 TurnRight => turtle.turn_right(),
144 Home => turtle.home(),
145 Noop(byte) => {
146 eprintln!("warning: illegal byte encountered: {:?}", byte)
147 },
148 };

Listing 10.15 Moving Artist

Listing 10.16 Focusing on the convert() function

To start, positions
the turtle in the
center of the
drawing area

We don’t generate a
Command immediately.
Instead, we modify the
internal state of turtle.

346 CHAPTER 10 Processes, threads, and containers
149 let line = Command::Line(
150 Position::Absolute,
151 (turtle.x, turtle.y).into()
152);
153 path_data.push(line);
154
155 turtle.wrap();
156 }
157 path_data
158 }

GENERATING AN SVG
The process of generating the SVG file is rather mechanical. generate_svg() (lines
161–192 of listing 10.18) does the work.

 SVG documents look a lot like HTML documents, although the tags and attributes
are different. The <path> tag is the most important one for our purposes. It has a d
attribute (d is short for data) that describes how the path should be drawn. convert()
produces a Vec<Command> that maps directly to the path data.

SOURCE CODE FOR THE SINGLE-THREADED VERSION OF RENDER-HEX

The render-hex project has an orthodox structure. The whole project sits within a
(fairly large) main.rs file managed by cargo. To download the project’s source code
from its public code repository, use the following commands:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
Cloning into 'rust-in-action'...

$ cd rust-in-action/ch10/ch10-render-hex

Otherwise, to create the project by hand, follow the commands in the following snip-
pet, and then copy the code from listing 10.18 into src/main.rs:

$ cargo new ch10-render-hex
 Created binary (application) `ch10-render-hex` package

$ cd ch10-render-hex

$ cargo install cargo-edit
 Updating crates.io index
 Downloaded cargo-edit v0.7.0
 Downloaded 1 crate (57.6 KB) in 1.35s
 Installing cargo-edit v0.7.0
...

$ cargo add svg@0.6
 Updating 'https:/ /github.com/rust-lang/crates.io-index' index
 Adding svg v0.6 to dependencies

The standard project structure, which you can compare against the following snippet,
has been created for you:

Creates a Command::Line
(a straight line toward the
turtle’s current position)

If the turtle is out of
bounds, returns it to
the center

347Procedurally generated avatars from a multithreaded parser and code generator
ch10-render-hex/
├── Cargo.toml
└── src
 └── main.rs

The following listing shows the metadata for our project. You should check that your
project’s Cargo.toml matches the relevant details. You’ll find the source for this listing
in ch10/ch10-render-hex/Cargo.toml.

[package]
name = "render-hex"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
svg = "0.6"

The single-threaded version of render-hex appears in the following listing. You’ll find
the source for this listing in ch10-render-hex/src/main.rs.

 1 use std::env;
 2
 3 use svg::node::element::path::{Command, Data, Position};
 4 use svg::node::element::{Path, Rectangle};
 5 use svg::Document;
 6
 7 use crate::Operation::{
 8 Forward,
 9 Home,
 10 Noop,
 11 TurnLeft,
 12 TurnRight
 13 };
 14 use crate::Orientation::{
 15 East,
 16 North,
 17 South,
 18 West
 19 };
 20
 21 const WIDTH: isize = 400;
 22 const HEIGHT: isize = WIDTH;
 23
 24 const HOME_Y: isize = HEIGHT / 2;
 25 const HOME_X: isize = WIDTH / 2;
 26
 27 const STROKE_WIDTH: usize = 5;
 28

Listing 10.17 Project metadata for render-hex

Listing 10.18 Source code for render-hex

See listing 10.17.

See listing 10.18.

Operation and
Orientation enum
types are defined
later. Including these
with the use keyword
removes a lot of noise
from the source code.

HEIGHT and WIDTH provide
the bounds of the drawing.

HOME_Y and HOME_X constants allow
us to easily reset where we are
drawing from. Here y is the vertical
coordinate and x is the horizontal.

STROKE_WIDTH, a parameter for
the SVG output, defines the look of
each drawn line.

348 CHAPTER 10 Processes, threads, and containers
 29 #[derive(Debug, Clone, Copy)]
 30 enum Orientation {
 31 North,
 32 East,
 33 West,
 34 South,
 35 }
 36
 37 #[derive(Debug, Clone, Copy)]
 38 enum Operation {
 39 Forward(isize),
 40 TurnLeft,
 41 TurnRight,
 42 Home,
 43 Noop(u8),
 44 }
 45
 46 #[derive(Debug)]
 47 struct Artist {
 48 x: isize,
 49 y: isize,
 50 heading: Orientation,
 51 }
 52
 53 impl Artist {
 54 fn new() -> Artist {
 55 Artist {
 56 heading: North,
 57 x: HOME_X,
 58 y: HOME_Y,
 59 }
 60 }
 61
 62 fn home(&mut self) {
 63 self.x = HOME_X;
 64 self.y = HOME_Y;
 65 }
 66
 67 fn forward(&mut self, distance: isize) {
 68 match self.heading {
 69 North => self.y += distance,
 70 South => self.y -= distance,
 71 West => self.x += distance,
 72 East => self.x -= distance,
 73 }
 74 }
 75
 76 fn turn_right(&mut self) {
 77 self.heading = match self.heading {
 78 North => East,
 79 South => West,
 80 West => North,
 81 East => South,
 82 }
 83 }

Using descriptions rather
than numerical values
avoids mathematics.

To produce richer output,
extends the operations
available to your programs

Using isize lets us extend this example
to implement a Reverse operation
without adding a new variant.

Uses Noop when we encounter illegal
input. To write error messages, we
retain the illegal byte.

The Artist struct
maintains the
current state.

forward() mutates self within
the match expression. This
contrasts with turn_left() and
turn_right(), which mutate self
outside of the match expression.

349Procedurally generated avatars from a multithreaded parser and code generator
 84
 85 fn turn_left(&mut self) {
 86 self.heading = match self.heading {
 87 North => West,
 88 South => East,
 89 West => South,
 90 East => North,
 91 }
 92 }
 93
 94 fn wrap(&mut self) {
 95 if self.x < 0 {
 96 self.x = HOME_X;
 97 self.heading = West;
 98 } else if self.x > WIDTH {
 99 self.x = HOME_X;
100 self.heading = East;
101 }
102
103 if self.y < 0 {
104 self.y = HOME_Y;
105 self.heading = North;
106 } else if self.y > HEIGHT {
107 self.y = HOME_Y;
108 self.heading = South;
109 }
110 }
111 }
112
113 fn parse(input: &str) -> Vec<Operation> {
114 let mut steps = Vec::<Operation>::new();
115 for byte in input.bytes() {
116 let step = match byte {
117 b'0' => Home,
118 b'1'..=b'9' => {
119 let distance = (byte - 0x30) as isize;
120 Forward(distance * (HEIGHT / 10))
121 }
122 b'a' | b'b' | b'c' => TurnLeft,
123 b'd' | b'e' | b'f' => TurnRight,
124 _ => Noop(byte),
125 };
126 steps.push(step);
127 }
128 steps
129 }
130
131 fn convert(operations: &Vec<Operation>) -> Vec<Command> {
132 let mut turtle = Artist::new();
133
134 let mut path_data = Vec::<Command>::with_capacity(operations.len());
135 let start_at_home = Command::Move(
136 Position::Absolute, (HOME_X, HOME_Y).into()
137);
138 path_data.push(start_at_home);

forward() mutates self within
the match expression. This
contrasts with turn_left() and
turn_right(), which mutate self
outside of the match expression.

wrap() ensures that
the drawing stays
within bounds.

In ASCII, numerals start at
0x30 (48). byte – 0x30
converts a u8 value of b'2' to
2. Performing this operation
on the whole range of u8
could cause a panic, but
we’re safe here, thanks to
the guarantee provided by
our pattern matching.

Although we don’t expect any illegal
characters, there may be some in
the input stream. A Noop operation
allows us to decouple parsing from
producing output.

350 CHAPTER 10 Processes, threads, and containers
139
140 for op in operations {
141 match *op {
142 Forward(distance) => turtle.forward(distance),
143 TurnLeft => turtle.turn_left(),
144 TurnRight => turtle.turn_right(),
145 Home => turtle.home(),
146 Noop(byte) => {
147 eprintln!("warning: illegal byte encountered: {:?}", byte);
148 },
149 };
150
151 let path_segment = Command::Line(
152 Position::Absolute, (turtle.x, turtle.y).into()
153);
154 path_data.push(path_segment);
155
156 turtle.wrap();
157 }
158 path_data
159 }
160
161 fn generate_svg(path_data: Vec<Command>) -> Document {
162 let background = Rectangle::new()
163 .set("x", 0)
164 .set("y", 0)
165 .set("width", WIDTH)
166 .set("height", HEIGHT)
167 .set("fill", "#ffffff");
168
169 let border = background
170 .clone()
171 .set("fill-opacity", "0.0")
172 .set("stroke", "#cccccc")
173 .set("stroke-width", 3 * STROKE_WIDTH);
174
175 let sketch = Path::new()
176 .set("fill", "none")
177 .set("stroke", "#2f2f2f")
178 .set("stroke-width", STROKE_WIDTH)
179 .set("stroke-opacity", "0.9")
180 .set("d", Data::from(path_data));
181
182 let document = Document::new()
183 .set("viewBox", (0, 0, HEIGHT, WIDTH))
184 .set("height", HEIGHT)
185 .set("width", WIDTH)
186 .set("style", "style=\"outline: 5px solid #800000;\"")
187 .add(background)
188 .add(sketch)
189 .add(border);
190
191 document
192 }
193

351Procedurally generated avatars from a multithreaded parser and code generator
194 fn main() {
195 let args = env::args().collect::<Vec<String>>();
196 let input = args.get(1).unwrap();
197 let default_filename = format!("{}.svg", input);
198 let save_to = args.get(2).unwrap_or(&default_filename);
199
200 let operations = parse(input);
201 let path_data = convert(&operations);
202 let document = generate_svg(path_data);
203 svg::save(save_to, &document).unwrap();
204 }

10.4.3 Spawning a thread per logical task

Our render-hex project (listing 10.18) also presents several opportunities for parallel-
ism. We’ll focus on one of these, the parse() function. To begin, adding parallelism is
a two-step process:

1 Refactor code to use a functional style.
2 Use the rayon crate and its par_iter() method.

USING A FUNCTIONAL PROGRAMMING STYLE

The first step in adding parallelism is to replace our for. Rather than for, the toolkit
for creating a Vec<T> with functional programming constructs includes the map() and
collect() methods and higher-order functions, typically created with closures.

 To compare the two styles, consider the differences to the parse() function from
listing 10.18 (in ch10-render-hex/src/main.rs), repeated in the following listing, and
a more functional style in listing 10.20 (in ch10-render-hex-functional/src/main.rs).

113 fn parse(input: &str) -> Vec<Operation> {
114 let mut steps = Vec::<Operation>::new();
115 for byte in input.bytes() {
116 let step = match byte {
117 b'0' => Home,
118 b'1'..=b'9' => {
119 let distance = (byte - 0x30) as isize;
120 Forward(distance * (HEIGHT / 10))
121 }
122 b'a' | b'b' | b'c' => TurnLeft,
123 b'd' | b'e' | b'f' => TurnRight,
124 _ => Noop(byte),
125 };
126 steps.push(step);
127 }
128 steps
129 }

Listing 10.19 Implementing parse() with imperative programming constructs

352 CHAPTER 10 Processes, threads, and containers
 99 fn parse(input: &str) -> Vec<Operation> {
100 input.bytes().map(|byte|{
101 match byte {
102 b'0' => Home,
103 b'1'..=b'9' => {
104 let distance = (byte - 0x30) as isize;
105 Forward(distance * (HEIGHT/10))
106 },
107 b'a' | b'b' | b'c' => TurnLeft,
108 b'd' | b'e' | b'f' => TurnRight,
109 _ => Noop(byte),
110 }}).collect()
111 }

Listing 10.20 is shorter, more declarative, and closer to idiomatic Rust. At a surface
level, the primary change is that there is no longer a need to create the temporary
variable steps. The partnership of map() and collect() removes the need for that:
map() applies a function to every element of an iterator, and collect() stores the out-
put of an iterator into a Vec<T>.

 There is also a more fundamental change than eliminating temporary variables in
this refactor, though. It has provided more opportunities for the Rust compiler to
optimize your code’s execution.

 In Rust, iterators are an efficient abstraction. Working with their methods directly
allows the Rust compiler to create optimal code that takes up minimal memory. As an
example, the map() method takes a closure and applies it to every element of the iter-
ator. Rust’s trick is that map() also returns an iterator. This allows many transforma-
tions to be chained together. Significantly, although map() may appear in multiple
places in your source code, Rust often optimizes those function calls away in the
compiled binary.

 When every step that the program should take is specified, such as when your code
uses for loops, you restrict the number of places where the compiler can make deci-
sions. Iterators provide an opportunity for you to delegate more work to the compiler.
This ability to delegate is what will shortly unlock parallelism.

USING A PARALLEL ITERATOR

We’re going to cheat here and make use of a crate from the Rust community: rayon.
rayon is explicitly designed to add data parallelism to your code. Data parallelism
applies the same function (or closure!) on different data (such as a Vec<T>).

 Assuming that you’ve already worked with the base render-hex project, add rayon
to your crate’s dependencies with cargo by executing cargo add rayon@1:

$ cargo add rayon@1
 Updating 'https://github.com/rust-lang/crates.io-index' index
 Adding rayon v1 to dependencies

Listing 10.20 Implementing parse() with functional programming constructs

Run cargo install cargo-edit if the
cargo add command is unavailable.

353Procedurally generated avatars from a multithreaded parser and code generator
Ensure that the [dependencies] section of your project’s Cargo.toml matches the fol-
lowing listing. You’ll find the source for this listing in ch10-render-hex-parallel-itera-
tor/Cargo.toml.

7 [dependencies]
8 svg = "0.6.0"
9 rayon = "1"

At the head of the main.rs file, add rayon and its prelude as listing 10.23 shows. pre-
lude brings several traits into the crate’s scope. This has the effect of providing a
par_bytes() method on string slices and a par_iter() method on byte slices. Those
methods enable multiple threads to cooperatively process data. The source for this
listing is in ch10-render-hex-parallel-iterator/Cargo.toml.

3 use rayon::prelude::*;

100 fn parse(input: &str) -> Vec<Operation> {
101 input
102 .as_bytes()
103 .par_iter()
104 .map(|byte| match byte {
105 b'0' => Home,
106 b'1'..=b'9' => {
107 let distance = (byte - 0x30) as isize;
108 Forward(distance * (HEIGHT / 10))
109 }
110 b'a' | b'b' | b'c' => TurnLeft,
111 b'd' | b'e' | b'f' => TurnRight,
112 _ => Noop(*byte),
113 })
114 .collect()
115 }

Using rayon’s par_iter() here is a “cheat mode” available to all Rust programmers,
thanks to Rust’s powerful std::iter::Iterator trait. rayon’s par_iter() is guaran-
teed to never introduce race conditions. But what should you do if you do not have an
iterator?

10.4.4 Using a thread pool and task queue

Sometimes, we don’t have a tidy iterator that we want to apply a function to. Another
pattern to consider is the task queue. This allows tasks to originate anywhere and for
the task processing code to be separated from task creation code. A fleet of worker
threads can then pick tasks once these have finished their current one.

Listing 10.21 Adding rayon as a dependency to Cargo.toml

Listing 10.22 Adding rayon to our render-hex project

Converts the input string
slice into a byte slice

Converts the byte slice
into a parallel iterator

The byte variable has the type &u8,
whereas the Operation::Noop(u8)
variant requires a dereferenced value.

354 CHAPTER 10 Processes, threads, and containers
 There are many approaches to modeling a task queue. We could create a Vec<Task>
and Vec<Result> and share references to these across threads. To prevent each
thread from overwriting each other, we would need a data protection strategy.

 The most common tool to protect data shared between threads is Arc<Mutex<T>>.
Fully expanded, that’s your value T (e.g., Vec<Task> or Vec<Result> here) protected
by a std::sync::Mutex, which itself is wrapped within std::sync::Arc. A Mutex is a
mutually-exclusive lock. Mutually exclusive in this context means that no one has spe-
cial rights. A lock held by any thread prevents all others. Awkwardly, a Mutex must
itself be protected between threads. So we call in extra support. The Arc provides safe
multithreaded access to the Mutex.

 Mutex and Arc are not unified into a single type to provide programmers with
added flexibility. Consider a struct with several fields. You may only need a Mutex on a
single field, but you could put the Arc around the whole struct. This approach pro-
vides faster read access to the fields that are not protected by the Mutex. A single
Mutex retains maximum protection for the field that has read-write access. The lock
approach, while workable, is cumbersome. Channels offer a simpler alternative.

 Channels have two ends: sending and receiving. Programmers don’t get access to
what is happening inside the channel. But placing data at the sending end means
it’ll appear at the receiving end at some future stage. Channels can be used as a task
queue because multiple items can be sent, even if a receiver is not ready to receive
any messages.

 Channels are fairly abstract. These hide their internal structure, preferring to dele-
gate access to two helper objects. One can send(); the other can recv() (receive).
Importantly, we don’t get access to how channels transmit any information sent through
the channel.

NOTE By convention, from radio and telegraph operators, the Sender is
called tx (shorthand for transmission) and the Receiver is called rx.

ONE-WAY COMMUNICATION

This section uses the channels implementation from the crossbeam crate rather than
from the std::sync::mpsc module within the Rust standard library. Both APIs pro-
vide the same API, but crossbeam provides greater functionality and flexibility. We’ll
spend a little time explaining how to use channels. If you would prefer to see them
used as a task queue, feel free to skip ahead.

 The standard library provides a channels implementation, but we’ll make use of
the third-party crate, crossbeam. It provides slightly more features. For example, it
includes both bounded queues and unbounded queues. A bounded queue applies back pres-
sure under contention, preventing the consumer from becoming overloaded. Bounded
queues (of fixed-width types) have deterministic maximum memory usage. These do
have one negative characteristic, though. They force queue producers to wait until a
space is available. This can make unbounded queues unsuitable for asynchronous
messages, which cannot tolerate waiting.

355Procedurally generated avatars from a multithreaded parser and code generator
 The channels-intro project (listings 10.23 and 10.24) provides a quick example.
Here is a console session that demonstrates running the channels-intro project from
its public source code repository and providing its expected output:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
Cloning into 'rust-in-action'...

$ cd ch10/ch10-channels-intro

$ cargo run
...
 Compiling ch10-channels-intro v0.1.0 (/ch10/ch10-channels-intro)
 Finished dev [unoptimized + debuginfo] target(s) in 0.34s
 Running `target/debug/ch10-channels-intro`
Ok(42)

To create the project by hand, follow these instructions:

1 Enter these commands from the command-line:

$ cargo new channels-intro
$ cargo install cargo-edit
$ cd channels-intro
$ cargo add crossbeam@0.7

2 Check that the project’s Cargo.toml file matches listing 10.23.
3 Replace the contents of src/main.rs with listing 10.24.

The following two listings make up the project. Listing 10.23 shows its Cargo.toml file.
Listing 10.24 demonstrates creating a channel for i32 messages from a worker thread.

[package]
name = "channels-intro"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
crossbeam = "0.7"

 1 #[macro_use]
 2 extern crate crossbeam;
 3
 4 use std::thread;
 5 use crossbeam::channel::unbounded;
 6
 7
 8 fn main() {

Listing 10.23 Cargo.toml metadata for channels-intro

Listing 10.24 Creating a channel that receives i32 messages

Provides the select!
macro, which simplifies
receiving messages

356 CHAPTER 10 Processes, threads, and containers
 9 let (tx, rx) = unbounded();
10
11 thread::spawn(move || {
12 tx.send(42)
13 .unwrap();
14 });
15
16 select!{
17 recv(rx) -> msg => println!("{:?}", msg),
18 }
19 }

Some notes about the channels-intro project:

 Creating a channel with crossbeam involves calling a function that returns Sender<T>
and Receiver<T>. Within listing 10.24, the compiler infers the type parameter.
tx is given the type Sender<i32> and rx is given the type Receiver<i32>.

 The select! macro takes its name from other messaging systems like the POSIX sockets
API. It allows the main thread to block and wait for a message.

 Macros can define their own syntax rules. That is why the select! macro uses syntax
(recv(rx) ->) that is not legal Rust.

WHAT CAN BE SENT THROUGH A CHANNEL?
Mentally, you might be thinking of a channel like you would envision a network proto-
col. Over the wire, however, you only have the type [u8] available to you. That byte
stream needs to be parsed and validated before its contents can be interpreted.

 Channels are richer than simply streaming bytes ([u8]). A byte stream is opaque
and requires parsing to have structure extracted out of it. Channels offer you the full
power of Rust’s type system. I recommend using an enum for messages as it offers
exhaustiveness testing for robustness and has a compact internal representation.

TWO-WAY COMMUNICATION

Bi-directional (duplex) communication is awkward to model with a single channel.
An approach that’s simpler to work with is to create two sets of senders and receivers,
one for each direction.

 The channels-complex project provides an example of this two channel strategy.
channels-complex is implemented in listings 10.25 and 10.26. These are available in
ch10/ch10-channels-complex/Cargo.toml and ch10/ch10-channels-complex/src/
main.rs, respectively.

 When executed, channels-complex produces three lines of output. Here is a ses-
sion that demonstrates running the project from its public source code repository:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
Cloning into 'rust-in-action'...

$ cd ch10/ch10-channels-complex

$ cargo run
...

Provides the select!
macro, which simplifies
receiving messages

recv(rx) is syntax
defined by the macro.

357Procedurally generated avatars from a multithreaded parser and code generator
 Compiling ch10-channels-intro v0.1.0 (/ch10/ch10-channels-complex)
 Finished dev [unoptimized + debuginfo] target(s) in 0.34s
 Running `target/debug/ch10-channels-complex`
Ok(Pong)
Ok(Pong)
Ok(Pong)

Some learners prefer to type everything out by hand. Here are the instructions to fol-
low if you are one of those people:

1 Enter these commands from the command-line:

$ cargo new channels-intro
$ cargo install cargo-edit
$ cd channels-intro
$ cargo add crossbeam@0.7

2 Check that the project’s Cargo.toml matches listing 10.25.
3 Replace src/main.rs with the contents of listing 10.26.

[package]
name = "channels-complex"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
crossbeam = "0.7"

 1 #[macro_use]
 2 extern crate crossbeam;
 3
 4 use crossbeam::channel::unbounded;
 5 use std::thread;
 6
 7 use crate::ConnectivityCheck::*;
 8
 9 #[derive(Debug)]
10 enum ConnectivityCheck {
11 Ping,
12 Pong,
13 Pang,
14 }
15
16 fn main() {
17 let n_messages = 3;
18 let (requests_tx, requests_rx) = unbounded();
19 let (responses_tx, responses_rx) = unbounded();
20

Listing 10.25 Project metadata for channels-complex

Listing 10.26 Sending messages to and from a spawned thread

Defining a bespoke
message type simplifies
interpreting messages
later.

358 CHAPTER 10 Processes, threads, and containers
21 thread::spawn(move || loop {
22 match requests_rx.recv().unwrap() {
23 Pong => eprintln!("unexpected pong response"),
24 Ping => responses_tx.send(Pong).unwrap(),
25 Pang => return,
26 }
27 });
28
29 for _ in 0..n_messages {
30 requests_tx.send(Ping).unwrap();
31 }
32 requests_tx.send(Pang).unwrap();
33
34 for _ in 0..n_messages {
35 select! {
36 recv(responses_rx) -> msg => println!("{:?}", msg),
37 }
38 }
39 }

IMPLEMENTING A TASK QUEUE

After spending some time discussing channels, it’s time to apply these to the problem
first introduced in listing 10.18. You’ll notice that the code that follows shortly in list-
ing 10.28 is quite a bit more complex than the parallel iterator approach seen in
listing 10.24.

 The following listing displays the metadata for the channel-based task queue
implementation of render-hex. The source for this listing is in ch10/ch10-render-hex-
threadpool/Cargo.toml.

[package]
name = "render-hex"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
svg = "0.6"
crossbeam = "0.7" #

The following listing focuses on the parse() function. The rest of the code is the same
as listing 10.18. You’ll find the code for the following listing in ch10/ch10-render-hex-
threadpool/src/main.rs.

1 use std::thread;
2 use std::env;
3
4 use crossbeam::channel::{unbounded};

Listing 10.27 The channel-based task queue metadata for render-hex

Listing 10.28 Partial code for the channel-based task queue for render-hex

Because all control flow
is an expression, Rust
allows the loop
keyword here.

The Pang message
indicates the thread
should shut down.

The crossbeam crate
is a new dependency
for the project.

359Procedurally generated avatars from a multithreaded parser and code generator

Creates
channe
tasks t
compl
 99 enum Work {
100 Task((usize, u8)),
101 Finished,
102 }
103
104 fn parse_byte(byte: u8) -> Operation {
105 match byte {
106 b'0' => Home,
107 b'1'..=b'9' => {
108 let distance = (byte - 0x30) as isize;
109 Forward(distance * (HEIGHT/10))
110 },
111 b'a' | b'b' | b'c' => TurnLeft,
112 b'd' | b'e' | b'f' => TurnRight,
113 _ => Noop(byte),
114 }
115 }
116
117 fn parse(input: &str) -> Vec<Operation> {
118 let n_threads = 2;
119 let (todo_tx, todo_rx) = unbounded();
120 let (results_tx, results_rx) = unbounded();
121 let mut n_bytes = 0;
122 for (i,byte) in input.bytes().enumerate() {
123 todo_tx.send(Work::Task((i,byte))).unwrap();
124 n_bytes += 1;
125 }
126
127 for _ in 0..n_threads {
128 todo_tx.send(Work::Finished).unwrap();
129 }
130
131 for _ in 0..n_threads {
132 let todo = todo_rx.clone();
133 let results = results_tx.clone();
134 thread::spawn(move || {
135 loop {
136 let task = todo.recv();
137 let result = match task {
138 Err(_) => break,
139 Ok(Work::Finished) => break,
140 Ok(Work::Task((i, byte))) => (i, parse_byte(byte)),
141 };
142 results.send(result).unwrap();
143
144 }
145 });
146 }
147 let mut ops = vec![Noop(0); n_bytes];
148 for _ in 0..n_bytes {
149 let (i, op) = results_rx.recv().unwrap();
150 ops[i] = op;
151 }
152 ops
153 }

Creates a type for the
messages we send
through the channels

The usize field of this tuple
indicates the position of the
processed byte. This is
necessary because these can
be returned out of order.

Gives worker threads a
marker message to indicate
that it’s time to shut down

Extracts the functionality that
workers will need to carry out
to simplify the logic

 one
l for
o be
eted

Creates one channel for
the decoded instructions
to be returned to

Fills the task
queue with work

Keeps track of how many
tasks there are to do

Sends each thread a
signal that it’s time
to shut down

When cloned, channels can
be shared between threads.

Because results can be
returned in arbitrary order,
initializes a complete
Vec<Command> that will
be overwritten by our
incoming results. We use a
vector rather than an array
because that’s what’s used
by the type signature, and
we don’t want to refactor
the whole program to suit
this new implementation.

360 CHAPTER 10 Processes, threads, and containers
When independent threads are introduced, the order in which tasks are completed
becomes non-deterministic. Listing 10.28 includes some additional complexity to han-
dle this.

 Previously, we created an empty Vec<Command> for the commands that we inter-
preted from our input. Once parsed, main() repeatedly added elements via the vec-
tor’s push() method. Now, at line 147, we fully initialize the vector. Its contents don’t
matter. It will all be overwritten. Even so, I’ve chosen to use Command::Noop to ensure
that a mistake won’t result in a corrupt SVG file.

10.5 Concurrency and task virtualization
This section explains the difference between models of concurrency. Figure 10.5 dis-
plays some of the trade-offs.

The primary benefit of more costly forms of task virtualization is isolation. What is
meant by the term isolation?

 Isolated tasks cannot interfere with each other. Interference comes in many forms.
Examples include corrupting memory, saturating the network, and congestion when
saving to disk. If a thread is blocked while waiting for the console to print output to
the screen, none of the coroutines acting in that thread are able to progress.

 Isolated tasks cannot access each other’s data without permission. Independent
threads in the same process share a memory address space, and all threads have equal
access to data within that space. Processes, however, are prohibited from inspecting
each other’s memory.

 Isolated tasks cannot cause another task to crash. A failure in one task should not
cascade into other systems. If a process induces a kernel panic, all processes are shut
down. By conducting work in virtual machines, tasks can proceed even when other
tasks are unstable.

Concurrency

Resources

required

Switch cost

Isolation

“Green”

Thread Thread Process Container

Virtual

machine

Figure 10.5 Trade-offs relating to different forms of task isolation in computing. In general terms,
increasing the isolation level increases the overhead.

361Concurrency and task virtualization
 Isolation is a continuum. Complete isolation is impractical. It implies that input
and output is impossible. Moreover, isolation is often implemented in software. Run-
ning extra software implies taking on extra runtime overhead.

A small glossary of terms relating to concurrency
This subfield is filled with jargon. Here is a brief introduction to some important terms
and how we use them:

 Program—A program, or application, is a brand name. It’s a name that we use
to refer to a software package. When we execute a program, the OS creates a
process.

 Executable—A file that can be loaded into memory and then run. Running an
executable means creating a process and a thread for it, then changing the
CPU’s instruction pointer to the first instruction of the executable.

 Task—This chapter uses the term task in an abstract sense. Its meaning
shifts as the level of abstraction changes:
a When discussing processes, a task is one of the process’s threads.
b When referring to a thread, a task might be a function call.
c When referring to an OS, a task might be a running program, which might

be comprised of multiple processes.
 Process—Running programs execute as processes. A process has its own vir-

tual address space, at least one thread, and lots of bookkeeping managed by
the OS. File descriptors, environment variables, and scheduling priorities are
managed per process. A process has a virtual address space, executable code,
open handles to system objects, a security context, a unique process identi-
fier, environment variables, a priority class, minimum and maximum working
set sizes, and at least one thread of execution.

Each process is started with a single thread, often called the primary
thread, but can create additional threads from any of its threads. Running pro-
grams begin their life as a single process, but it isn’t uncommon to spawn
subprocesses to do the work.

 Thread—The thread metaphor is used to hint that multiple threads can work
together as a whole.

 Thread of execution—A sequence of CPU instructions that appear in serial.
Multiple threads can run concurrently, but instructions within the sequence
are intended to be executed one after another.

 Coroutine—Also known as fibre, green thread, and lightweight thread, a corou-
tine indicates tasks that switch within a thread. Switching between tasks
becomes the responsibility of the program itself, rather than the OS. Two the-
oretical concepts are important to distinguish:
a Concurrency, which is multiple tasks of any level of abstraction running at

the same time
b Parallelism, which is multiple threads executing on multiple CPUs at the

same time

362 CHAPTER 10 Processes, threads, and containers
10.5.1 Threads

A thread is the lowest level of isolation that an OS understands. The OS can schedule
threads. Smaller forms of concurrency are invisible to the OS. You may have encoun-
tered terms such as coroutines, fibers, and green threads.

 Switching between tasks here is managed by the process itself. The OS is ignorant
of the fact that a program is processing multiple tasks. For threads and other forms of
concurrency, context switching is required.

10.5.2 What is a context switch?

Switching between tasks at the same level of virtualization is known as a context switch.
For threads to switch, CPU registers need to be cleared, CPU caches might need to be
flushed, and variables within the OS need to be reset. As isolation increases, so does
the cost of the context switch.

 CPUs can only execute instructions in serial. To do more than one task, a com-
puter, for example, needs to be able to press the Save Game button, switch to a new
task, and resume at that task’s saved spot. The CPU is save scum.

 Why is the CPU constantly switching tasks? Because it has so much time available.
Programs often need to access data from memory, disk, or the network. Because wait-
ing for data is incredibly slow, there’s often sufficient time to do something else in the
meantime.

(continued)

Outside of the fundamental terminology, there are also interrelated terms that appear
frequently: asynchronous programming and non-blocking I/O. Many operating sys-
tems provide non-blocking I/O facilities, where data from multiple sockets is batched
into queues and periodically polled as a group. Here are the definitions for these:

 Non-blocking I/O—Normally a thread is unscheduled when it asks for data
from I/O devices like the network. The thread is marked as blocked, while it
waits for data to arrive.

When programming with non-blocking I/O, the thread can continue execut-
ing even while it waits for data. But there is a contradiction. How can a thread
continue to execute if it doesn’t have any input data to process? The answer
lies in asynchronous programming.

 Asynchronous programming—Asynchronous programming describes program-
ming for cases where the control flow is not predetermined. Instead, events
outside the control of the program itself impact the sequence of what is exe-
cuted. Those events are typically related to I/O, such as a device driver sig-
nalling that it is ready, or are related to functions returning in another thread.

The asynchronous programming model is typically more complicated for
the developer, but results in a faster runtime for I/O-heavy workloads. Speed
increases because there are fewer system calls. This implies fewer context
switches between the user space and the kernel space.

363Concurrency and task virtualization
10.5.3 Processes

Threads exist within a process. The distinguishing characteristic of a process is that its
memory is independent from other processes. The OS, in conjunction with the CPU,
protects a process’s memory from all others.

 To share data between processes, Rust channels and data protected by Arc<Mutex<_>>
won’t suffice. You need some support from the OS. For this, reusing network sockets is
common. Most operating systems provide specialized forms of interprocess communi-
cation (IPC), which are faster, while being less portable.

10.5.4 WebAssembly

WebAssembly (Wasm) is interesting because it is an attempt at isolating tasks within
the process boundary itself. It’s impossible for tasks running inside a Wasm module to
access memory available to other tasks. Originating in web browsers, Wasm treats all
code as potentially hostile. If you use third-party dependencies, it’s likely that you
haven’t verified the behavior of all of the code that your process executes.

 In a sense, Wasm modules are given access to address spaces within your process’s
address space. Wasm address spaces are called linear memory. Runtime interprets any
request for data within linear memory and makes its own request to the actual virtual
memory. Code within the Wasm module is unaware of any memory addresses that the
process has access to.

10.5.5 Containers

Containers are extensions to processes with further isolation provided by the OS. Pro-
cesses share the same filesystem, whereas containers have a filesystem created for
them. The same is true for other resources, such as the network. Rather than address
space, the term used for protections covering these other resources is namespaces.

10.5.6 Why use an operating system (OS) at all?

It’s possible to run an application as its own OS. Chapter 11 provides one implementa-
tion. The general term for an application that runs without an OS is to describe it as
freestanding—freestanding in the sense that it does not require the support of an OS.
Freestanding binaries are used by embedded software developers when there is no OS
to rely on.

 Using freestanding binaries can involve significant limitations, though. Without an
OS, applications no longer have virtual memory or multithreading. All of those con-
cerns become your application’s concerns. To reach a middle ground, it is possible to
compile a unikernel. A unikernel is a minimal OS paired with a single application. The
compilation process strips out everything from the OS that isn’t used by the applica-
tion that’s being deployed.

364 CHAPTER 10 Processes, threads, and containers
Summary
 Closures and functions both feel like they should be the same type, but they

aren’t identical. If you want to create a function that accepts either a function or a
closure as an argument, then make use of the std::ops::Fn family of traits.

 A functional style that makes heavy use of higher-order programming and itera-
tors is idiomatic Rust. This approach tends to work better with third-party
libraries because std::iter::Iterator is such a common trait to support.

 Threads have less impact than you have probably heard, but spawning threads
without bounds can cause significant problems.

 To create a byte (u8) from a literal, use single quotes (e.g., b'a'). Double
quotes (e.g., b"a") creates a byte slice ([u8]) of length 1.

 To increase the convenience of enums, it can be handy to bring their variants
into local scope with use crate::.

 Isolation is provided as a spectrum. In general, as isolation between software
components increases, performance decreases.

Kernel
Let’s build an operating system (OS). By the end of the chapter, you’ll be running
your own OS (or, at least, a minimal subset of one). Not only that, but you will have
compiled your own bootloader, your own kernel, and the Rust language directly for
that new target (which doesn’t exist yet).

 This chapter covers many features of Rust that are important for programming
without an OS. Accordingly, the chapter is important for programmers who intend
to work with Rust on embedded devices.

11.1 A fledgling operating system (FledgeOS)
In this section, we’ll implement an OS kernel. The OS kernel performs several
important roles, such as interacting with hardware and memory management, and
coordinating work. Typically, work is coordinated through processes and threads.
We won’t be able to cover much of that in this chapter, but we will get off the
ground. We’ll fledge, so let’s call the system we’re building FledgeOS.

This chapter covers
 Writing and compiling your own OS kernel

 Gaining a deeper understanding of the Rust
compiler’s capabilities

 Extending cargo with custom subcommands
365

366 CHAPTER 11 Kernel
11.1.1 Setting up a development environment
for developing an OS kernel

Creating an executable for an OS that doesn’t exist yet is a complicated process. For
instance, we need to compile the core Rust language for the OS from your current
one. But your current environment only understands your current environment. Let’s
extend that. We need several tools to help us out. Here are several components that
you will need to install and/or configure before creating FledgeOS:

 QEMU—A virtualization technology. Formally part of a class of software called
virtual machine monitors,” it runs operating systems for any machine on any of its
supported hosted architectures. Visit https://www.qemu.org/ for installation
instructions.

 The bootimage crate and some supporting tools—The bootimage crate does the heavy
lifting for our project. Thankfully, installing it and the tools needed to work
with it effectively is a lightweight process. To do that, enter the following com-
mands from the command line:

$ cargo install cargo-binutils
...
 Installed package `cargo-binutils v0.3.3` (executables `cargo-cov`,
 `cargo-nm`, `cargo-objcopy`, `cargo-objdump`, `cargo-profdata`,
 `cargo-readobj`, `cargo-size`, `cargo-strip`, `rust-ar`, `rust-cov`,
 `rust-ld`, `rust-lld`, `rust-nm`, `rust-objcopy`, `rust-objdump`,
 `rust-profdata`, `rust-readobj`, `rust-size`, `rust-strip`)

$ cargo install bootimage
...
 Installed package `bootimage v0.10.3` (executables `bootimage`,
 `cargo-bootimage`)

$ rustup toolchain install nightly
info: syncing channel updates for 'nightly-x86_64-unknown-linux-gnu'
...

$ rustup default nightly
info: using existing install for 'nightly-x86_64-unknown-linux-gnu'
info: default toolchain set to 'nightly-x86_64-unknown-linux-gnu'
...

$ rustup component add rust-src
info: downloading component 'rust-src'
...

$ rustup component add llvm-tools-preview
info: downloading component 'llvm-tools-preview'
...

Each of these tools performs an important role:

 The cargo-binutils crate—Enables cargo to directly manipulate executable files
via subcommands using utilities built with Rust and installed by cargo. Using

Over time, this may
become the llvm-tools
component.

https://www.qemu.org/

367A fledgling operating system (FledgeOS)
cargo-binutils rather than installing binutils via another route prevents any
potential version mismatches.

 The bootimage crate—Enables cargo to build a boot image, an executable that can
be booted directly on hardware.

 The nightly toolchain—Installing the nightly version of the Rust compiler unlocks
features that have not yet been marked as stable, and thus constrained by Rust’s
backward-compatibility guarantees. Some of the compiler internals that we will
be accessing in this chapter are unlikely to ever be stabilized.

We set nightly to be our default toolchain to simplify the build steps for proj-
ects in this chapter. To revert the change, use the command rustup default
stable.

 The rust-src component—Downloads the source code for the Rust programming
language. This enables Rust to compile a compiler for the new OS.

 The llvm-tools-preview component—Installs extensions for the LLVM compiler,
which makes up part of the Rust compiler.

11.1.2 Verifying the development environment

To prevent significant frustration later on, it can be useful to double-check that every-
thing is installed correctly. To do that, here’s a checklist:

 QEMU—The qemu-system-x86_64 utility should be on your PATH. You can
check that this is the case by providing the --version flag:

$ qemu-system-x86_64 --version
QEMU emulator version 4.2.1 (Debian 1:4.2-3ubuntu6.14)
Copyright (c) 2003-2019 Fabrice Bellard and the QEMU Project developers

 The cargo-binutils crate—As indicated by the output of cargo install cargo-
binutils, several executables were installed on your system. Executing any of
those with the --help flag should indicate that all of these are available. For
example, to check that rust-strip is installed, use this command:

$ rust-strip --help
OVERVIEW: llvm-strip tool

USAGE: llvm-strip [options] inputs..
...

 The bootimage crate—Use the following command to check that all of the pieces
are wired together:

$ cargo bootimage --help
Creates a bootable disk image from a Rust kernel
...

368 CHAPTER 11 Kernel
 The llvm-tools-preview toolchain component—The LLVM tools are a set of auxiliary
utilities for working with LLVM. On Linux and macOS, you can use the follow-
ing commands to check that these are accessible to rustc:

$ export SYSROOT=$(rustc --print sysroot)

$ find "$SYSROOT" -type f -name 'llvm-*' -printf '%f\n' | sort
llvm-ar
llvm-as
llvm-cov
llvm-dis
llvm-nm
llvm-objcopy
llvm-objdump
llvm-profdata
llvm-readobj
llvm-size
llvm-strip

On MS Windows, the following commands produce a similar result:

C:\> rustc --print sysroot
C:\> cd <sysroot>
C:\> dir llvm*.exe /s /b

Great, the environment has been set up. If you encounter any problems, try reinstall-
ing the components from scratch.

11.2 Fledgeos-0: Getting something working
FledgeOS requires some patience to fully comprehend. Although the code may be
short, it includes many concepts that are probably novel because they are not exposed
to programmers who make use of an OS. Before getting started with the code, let’s see
FledgeOS fly.

11.2.1 First boot

FledgeOS is not the world’s most powerful operating system. Truthfully, it doesn’t
look like much at all. At least it’s a graphical environment. As you can see from fig-
ure 11.1, it creates a pale blue box in the top-left corner of the screen.

 To get fledgeos-0 up and running, execute these commands from a command-line
prompt:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
Cloning into 'rust-in-action'...
...

$ cd rust-in-action/ch11/ch11-fledgeos-0

$ cargo +nightly run
...
Running: qemu-system-x86_64 -drive
 format=raw,file=target/fledge/debug/bootimage-fledgeos.bin

Replace <sysroot> with the
output of the previous command

Adding +nightly ensures that
the nightly compiler is used.

369Fledgeos-0: Getting something working
Don’t worry about how the block at the top left changed color. We’ll discuss the retro-
computing details for that shortly. For now, success is being able to compile your own
version of Rust, an OS kernel using that Rust, a bootloader that puts your kernel in
the right place, and having these all work together.

 Getting this far is a big achievement. As mentioned earlier, creating a program that
targets an OS kernel that doesn’t exist yet is complicated. Several steps are required:

1 Create a machine-readable definition of the conventions that the OS uses, such
as the intended CPU architecture. This is the target platform, also known as a com-
piler target or simply target. You have seen targets before. Try executing rustup
target list for a list that you can compile Rust to.

2 Compile Rust for the target definition to create the new target. We’ll suffice
with a subset of Rust called core that excludes the standard library (crates under
std).

3 Compile the OS kernel for the new target using the “new” Rust.
4 Compile a bootloader that can load the new kernel.
5 Execute the bootloader in a virtual environment, which, in turn, runs the kernel.

Thankfully, the bootimage crate does all of this for us. With all of that fully automated,
we’re able to focus on the interesting pieces.

Figure 11.1 Expected output from running fledgeos-0 (listings 11.1–11.4)

370 CHAPTER 11 Kernel
11.2.2 Compilation instructions

To make use of the publicly available source code, follow the steps in section 11.1.3.
That is, execute these commands from a command prompt:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
Cloning into 'rust-in-action'...
...
$ cd rust-in-action/ch11/ch11-fledgeos-0

To create the project by hand, here is the recommended process:

1 From a command-line prompt, execute these commands:

$ cargo new fledgeos-0
$ cargo install cargo-edit
$ cd fledgeos-0
$ mkdir .cargo
$ cargo add bootloader@0.9
$ cargo add x86_64@0.13

2 Add the following snippet to the end of project’s Cargo.toml file. Compare the
result with listing 11.1, which can be downloaded from ch11/ch11-fledgeos-0/
Cargo.toml:

[package.metadata.bootimage]
build-command = ["build"]

run-command = [
 "qemu-system-x86_64", "-drive", "format=raw,file={}"
]

3 Create a new fledge.json file at the root of the project with the contents from
listing 11.2. You can download this from the listing in ch11/ch11-fledgeos-0/
fledge.json.

4 Create a new .cargo/config.toml file from listing 11.3, which is available in
ch11/ch11-fledgeos-0/.cargo/config.toml.

5 Replace the contents of src/main with listing 11.4, which is available in ch11/
ch11-fledgeos-0/src/main.rs.

11.2.3 Source code listings

The source code for the FledgeOS projects (code/ch11/ch11-fledgeos-*) uses a
slightly different structure than most cargo projects. Here is a view of their layout,
using fledgeos-0 as a representative example:

fledgeos-0
├── Cargo.toml
├── fledge.json
├── .cargo
│ └── config.toml

See listing 11.1.

See listing 11.2.

See listing 11.3.

371Fledgeos-0: Getting something working
└── src
 └── main.rs

The projects include two extra files:

 The project root directory contains a fledge.json file. This is the definition of the com-
piler target that bootimage and friends will be building.

 The .cargo/config.toml file provides extra configuration parameters. These tell cargo
that it needs to compile the std::core module itself for this project, rather than
relying on it being preinstalled.

The following listing provides the project’s Cargo.toml file. It is available in ch11/
ch11-fledgeos-0/Cargo.toml.

[package]
name = "fledgeos"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
bootloader = "0.9"
x86_64 = "0.13"

[package.metadata.bootimage]
build-command = ["build"]

run-command = [
 "qemu-system-x86_64", "-drive", "format=raw,file={}"
]

The project’s Cargo.toml file is slightly unique. It includes a new table, [package
.metadata.bootimage], which contains a few directives that are probably confusing.
This table provides instructions to the bootimage crate, which is a dependency of
bootloader:

 bootimage—Creates a bootable disk image from a Rust kernel
 build-command—Instructs bootimage to use the cargo build command rather

than cargo xbuild for cross-compiling
 run_command—Replaces the default behavior of cargo run to use QEMU rather

than invoking the executable directly

TIP See the documentation at https://github.com/rust-osdev/bootimage/
for more information about how to configure bootimage.

The following listing shows our kernel target’s definition. It is available from ch11/
ch11-fledgeos-0/fledge.json.

Listing 11.1 Project metadata for fledgeos-0

See listing 11.4.

Updates cargo run to invoke a
QEMU session. The path to the OS
image created during the build
replaces the curly braces ({}).

https://github.com/rust-osdev/bootimage/

372 CHAPTER 11 Kernel
{
 "llvm-target": "x86_64-unknown-none",
 "data-layout": "e-m:e-i64:64-f80:128-n8:16:32:64-S128",
 "arch": "x86_64",
 "target-endian": "little",
 "target-pointer-width": "64",
 "target-c-int-width": "32",
 "os": "none",
 "linker": "rust-lld",
 "linker-flavor": "ld.lld",
 "executables": true,
 "features": "-mmx,-sse,+soft-float",
 "disable-redzone": true,
 "panic-strategy": "abort"
}

Among other things, the target kernel’s definition specifies that it is a 64-bit OS built
for x86-64 CPUs. This JSON specification is understood by the Rust compiler.

TIP Learn more about custom targets from the “Custom Targets” section of
the rustc book at https://doc.rust-lang.org/stable/rustc/targets/custom.html.

The following listing, available from ch11/ch11-fledgeos-0/.cargo/config.toml, pro-
vides an additional configuration for building FledgeOS. We need to instruct cargo
to compile the Rust language for the compiler target that we defined in the previ-
ous listing.

[build]
target = "fledge.json"

[unstable]
build-std = ["core", "compiler_builtins"]
build-std-features = ["compiler-builtins-mem"]

[target.'cfg(target_os = "none")']
runner = "bootimage runner"

We are finally ready to see the kernel’s source code. The next listing, available from
ch11/ch11-fledgeos-0/src/main.rs, sets up the boot process, and then writes the value
0x30 to a predefined memory address. You’ll read about how this works in section 11.2.5.

 1 #![no_std]
 2 #![no_main]
 3 #![feature(core_intrinsics)]
 4
 5 use core::intrinsics;

Listing 11.2 Kernel definition for FledgeOS

Listing 11.3 Extra build-time configuration for cargo

Listing 11.4 Creating an OS kernel that paints a block of color

Prepares the program for
running without an OS

Unlocks the LLVM compiler’s
intrinsic functions

https://doc.rust-lang.org/stable/rustc/targets/custom.html

373Fledgeos-0: Getting something working
 6 use core::panic::PanicInfo;
 7
 8 #[panic_handler]
 9 #[no_mangle]
10 pub fn panic(_info: &PanicInfo) -> ! {
11 intrinsics::abort();
12 }
13
14 #[no_mangle]
15 pub extern "C" fn _start() -> ! {
16 let framebuffer = 0xb8000 as *mut u8;
17
18 unsafe {
19 framebuffer
20 .offset(1)
21 .write_volatile(0x30);
22 }
23
24 loop {}
25 }

Listing 11.4 looks very different from the Rust projects that we have seen so far. Here
are some of the changes to ordinary programs that are intended to be executed along-
side an OS:

 The central FledgeOS functions never return. There is no place to return to. There
are no other running programs. To indicate this, our functions’ return type is
the Never type (!).

 If the program crashes, the whole computer crashes. The only thing that our program
can do when an error occurs is terminate. We indicate this by relying on LLVM’s
abort() function. This is explained in more detail in section 11.2.4.

 We must disable the standard library with ![no_std]. As our application cannot rely
on an OS to provide dynamic memory allocation, it’s important to avoid any
code that dynamically allocates memory. The ![no_std] annotation excludes
the Rust standard library from our crate. This has the side effect of preventing
many types, such as Vec<T>, from being available to our program.

 We need to unlock the unstable core_intrinsics API with the #![core_intrinsics]
attribute. Part of the Rust compiler is provided by LLVM, the compiler produced
by the LLVM project. LLVM exposes parts of its internals to Rust, which are
known as intrinsic functions. As LLVM’s internals are not subject to Rust’s stabil-
ity guarantees, there is always a risk that what is offered to Rust will change.
Therefore, this implies that we must use the nightly compiler toolchain and
explicitly opt into the unstable API in our program.

 We need to disable the Rust symbol-naming conventions with the #![no_mangle] attribute.
Symbol names are strings within the compiled binary. For multiple libraries to
coexist at runtime, it’s important that these names do not collide. Ordinarily,
Rust avoids this by creating symbols via a process called name mangling. We need

Allows the panic handler
to inspect where the
panic occurred

Crashes the
program

Increments the
pointer’s address
by 1 to 0xb8001

Sets the background
to cyan

374 CHAPTER 11 Kernel
to disable this from occurring in our program; otherwise, the boot process
may fail.

 We should opt into C’s calling conventions with extern "C". An operating system’s
calling convention relates to the way function arguments are laid out in mem-
ory, among other details. Rust does not define its calling convention. By anno-
tating the _start() function with extern "C", we instruct Rust to use the C
language’s calling conventions. Without this, the boot process may fail.

 Writing directly to memory changes the display. Traditionally, operating systems used
a simplistic model for adjusting the screen’s output. A predefined block of
memory, known as the frame buffer, was monitored by the video hardware. When
the frame buffer changed, the display changed to match. One standard, used by
our bootloader, is VGA (Video Graphics Array). The bootloader sets up address
0xb8000 as the start of the frame buffer. Changes to its memory are reflected
onscreen. This is explained in detail in section 11.2.5.

 We should disable the inclusion of a main() function with the #![no_main] attri-
bute. The main() function is actually quite special because its arguments are
provided by a function that is ordinarily included by the compiler (_start()),
and its return values are interpreted before the program exits. The behavior of
main() is part of the Rust runtime. Read section 11.2.6 for more details.

Now that our first kernel is live, let’s learn a little bit about how it works. First, let’s
look at panic handling.

11.2.4 Panic handling

Rust won’t allow you to compile a program that doesn’t have a mechanism to deal
with panics. Normally, it inserts panic handling itself. This is one of the actions of the
Rust runtime, but we started our code with #[no_std]. Avoiding the standard library
is useful in that it greatly simplifies compilation, but manual panic handling is one of
its costs. The following listing is an excerpt from listing 11.4. It introduces our panic-
handling functionality.

 1 #![no_std]
 2 #![no_main]

Where to go to learn more about OS development
The cargo bootimage command takes care of lots of nuisances and irritation. It pro-
vides a simple interface—a single command—to a complicated process. But if you’re
a tinkerer, you might like to know what’s happening beneath the surface. In that case,
you should search Philipp Oppermann’s blog, “Writing an OS in Rust,” at https://os
.phil-opp.com/ and look into the small ecosystem of tools that has emerged from it
at https://github.com/rust-osdev/.

Listing 11.5 Focusing on panic handling for FledgeOS

https://os.phil-opp.com/
https://os.phil-opp.com/
https://os.phil-opp.com/
https://github.com/rust-osdev/

375Fledgeos-0: Getting something working
 3 #![feature(core_intrinsics)]
 4
 5 use core::intrinsics;
 6 use core::panic::PanicInfo;
 7
 8 #[panic_handler]
 9 #[no_mangle]
10 pub fn panic(_info: &PanicInfo) -> ! {
11 unsafe {
12 intrinsics::abort();
13 }
14 }

There is an alternative to intrinsics::abort(). We could use an infinite loop as the
panic handler, shown in the following listing. The disadvantage of that approach is
that any errors in the program trigger the CPU core to run at 100% until it is shut
down manually.

#[panic_handler]
#[no_mangle]
pub fn panic(_info: &PanicInfo) -> ! {
 loop { }
}

The PanicInfo struct provides information about where the panic originates. This
information includes the filename and line number of the source code. It’ll come in
handy when we implement proper panic handling.

11.2.5 Writing to the screen with VGA-compatible text mode

The bootloader sets some magic bytes with raw assembly code in boot mode. At
startup, the bytes are interpreted by the hardware. The hardware switches its display to
an 80x25 grid. It also sets up a fixed-memory buffer that is interpreted by the hard-
ware for printing to the screen.

Listing 11.6 Using an infinite loop as a panic handler

VGA-compatible text mode in 20 seconds
Normally, the display is split into an 80x25 grid of cells. Each cell is represented in
memory by 2 bytes. In Rust-like syntax, those bytes include several fields. The follow-
ing code snippet shows the fields:

struct VGACell {
 is_blinking: u1,
 background_color: u3,
 is_bright: u1,
 character_color: u3,
 character: u8,
}

These four fields
occupy a single
byte in memory.

Available characters are drawn from
the code page 437 encoding, which is
(approximately) an extension of ASCII.

376 CHAPTER 11 Kernel
This initialization at boot time makes it easy to display things onscreen. Each of the
points in the 80x25 grid are mapped to locations in memory. This area of memory is
called the frame buffer.

 Our bootloader designates 0xb8000 as the start of a 4,000 byte frame buffer. To
actually set the value, our code uses two new methods, offset() and write_volatile(),
that you haven’t encountered before. The following listing, an excerpt from listing 11.4,
shows how these are used.

18 let mut framebuffer = 0xb8000 as *mut u8;
19 unsafe {
20 framebuffer
21 .offset(1)
22 .write_volatile(0x30);
23 }

Here is a short explanation of the two new methods:

 Moving through an address space with offset()—A pointer type’s offset() method
moves through the address space in increments that align to the size of the
pointer. For example, calling .offset(1) on a *mut u8 (mutable pointer to a
u8) adds 1 to its address. When that same call is made to a *mut u32 (mutable
pointer to a u32), the pointer’s address moves by 4 bytes.

 Forcing a value to be written to memory with write_volatile()—Pointers provide a
write_volatile() method that issues a “volatile” write. Volatile prevents the
compiler’s optimizer from optimizing away the write instruction. A smart com-
piler might simply notice that we are using lots of constants everywhere and ini-
tialize the program such that the memory is simply set to the value that we want
it to be.

(continued)

VGA text mode has a 16-color palette, where 3 bits make up the main 8 colors. Fore-
ground colors also have an additional bright variant, shown in the following:

#[repr(u8)]
enum Color {
 Black = 0, White = 8,
 Blue = 1, BrightBlue = 9,
 Green = 2, BrightGreen = 10,
 Cyan = 3, BrightCyan = 11,
 Red = 4, BrightRed = 12,
 Magenta = 5, BrightMagenta = 13,
 Brown = 6, Yellow = 14,
 Gray = 7, DarkGray = 15,
}

Listing 11.7 Focusing on modifying the VGA frame buffer

377fledgeos-1: Avoiding a busy loop
The following listing shows another way to write framebuffer.offset(1).write_
volatile(0x30). Here we use the dereference operator (*) and manually set the
memory to 0x30.

18 let mut framebuffer = 0xb8000 as *mut u8;
19 unsafe {
20 *(framebuffer + 1) = 0x30;
21 }

The coding style from listing 11.8 may be more familiar to programmers who have
worked heavily with pointers before. Using this style requires diligence. Without the
aid of type safety provided by offset(), it’s easy for a typo to cause memory corrup-
tion. The verbose coding style used in listing 11.7 is also friendlier to programmers
with less experience performing pointer arithmetic. It declares its own intent.

11.2.6 _start(): The main() function for FledgeOS

An OS kernel does not include the concept of a main() function, in the sense that
you’re used to. For one thing, an OS kernel’s main loop never returns. Where would it
return to? By convention, programs return an error code when they exit to an OS. But
operating systems don’t have an OS to provide an exit code to. Secondly, starting a
program at main() is also a convention. But that convention also doesn’t exist for OS
kernels. To start an OS kernel, we require some software to talk directly to the CPU.
The software is called a bootloader.

 The linker expects to see one symbol defined, _start, which is the program’s entry
point. It links _start to a function that’s defined by your source code.

 In an ordinary environment, the _start() function has three jobs. Its first is to
reset the system. On an embedded system, for example, _start() might clear regis-
ters and reset memory to 0. Its second job is to call main(). Its third is to call _exit(),
which cleans up after main(). Our _start() function doesn’t perform the last two
jobs. Job two is unnecessary as the application’s functionality is simple enough to keep
within _start(). Job three is unnecessary, as is main(). If it were to be called, it would
never return.

11.3 fledgeos-1: Avoiding a busy loop
Now that the foundations are in place, we can begin to add features to FledgeOS.

11.3.1 Being power conscious by interacting with the CPU directly

Before proceeding, FledgeOS needs to address one major shortcoming: it is extremely
power hungry. The _start() function from listing 11.4 actually runs a CPU core at
100%. It’s possible to avoid this by issuing the halt instruction (hlt) to the CPU.

 The halt instruction, referred to as HLT in the technical literature, notifies the
CPU that there’s no more work to be done. The CPU resumes operating when an

Listing 11.8 Manually incrementing a pointer

Sets the memory location
0xb8001 to 0x30

378 CHAPTER 11 Kernel
interrupt triggers new action. As listing 11.9 shows, making use of the x84_64 crate
allows us to issue instructions directly to the CPU. The listing, an excerpt of listing
11.10, makes use of the x86_64 crate to access the hlt instruction. It is passed to the
CPU during the main loop of _start() to prevent excessive power consumption.

7 use x86_64::instructions::{hlt};

17 #[no_mangle]
18 pub extern "C" fn _start() -> ! {
19 let mut framebuffer = 0xb8000 as *mut u8;
20 unsafe {
21 framebuffer
22 .offset(1)
23 .write_volatile(0x30);
24 }
25 loop {
26 hlt();
27 }
28 }

The alternative to using hlt is for the CPU to run at 100% utilization, performing no
work. This turns your computer into a very expensive space heater.

11.3.2 fledgeos-1 source code

fledgeos-1 is mostly the same as fledgeos-0, except that its src/main.rs file includes the
additions from the previous section. The new file is presented in the following listing
and is available to download from code/ch11/ch11-fledgeos-1/src/main.rs. To com-
pile the project, repeat the instructions in section 11.2.1, replacing references to
fledgeos-0 with fledgeos-1.

 1 #![no_std]
 2 #![no_main]
 3 #![feature(core_intrinsics)]
 4
 5 use core::intrinsics;
 6 use core::panic::PanicInfo;
 7 use x86_64::instructions::{hlt};
 8
 9 #[panic_handler]
10 #[no_mangle]
11 pub fn panic(_info: &PanicInfo) -> ! {
12 unsafe {
13 intrinsics::abort();
14 }
15 }
16
17 #[no_mangle]

Listing 11.9 Using the hlt instruction

Listing 11.10 Project source code for fledgeos-1

This saves
electricity.

379fledgeos-2: Custom exception handling
18 pub extern "C" fn _start() -> ! {
19 let mut framebuffer = 0xb8000 as *mut u8;
20 unsafe {
21 framebuffer
22 .offset(1)
23 .write_volatile(0x30);
24 }
25 loop {
26 hlt();
27 }
28 }

The x86_64 crate provided us with the ability to inject assembly instructions into our
code. Another approach to explore is to use inline assembly. The latter approach is
demonstrated briefly in section 12.3.

11.4 fledgeos-2: Custom exception handling
The next iteration of FledgeOS improves on its error-handling capabilities. FledgeOS
still crashes when an error is triggered, but we now have a framework for building
something more sophisticated.

11.4.1 Handling exceptions properly, almost

FledgeOS cannot manage any exceptions generated from the CPU when it detects an
abnormal operation. To handle exceptions, our program needs to define an exception-
handling personality function.

 Personality functions are called on each stack frame as the stack is unwound after
an exception. This means the call stack is traversed, invoking the personality function
at each stage. The personality function’s role is to determine whether the current
stack frame is able to handle the exception. Exception handling is also known as catch-
ing an exception.

NOTE What is stack unwinding? When functions are called, stack frames accu-
mulate. Traversing the stack in reverse is called unwinding. Eventually, unwind-
ing the stack will hit _start().

Because handling exceptions in a rigorous way is not necessary for FledgeOS, we’ll
implement only the bare minimum. Listing 11.11, an excerpt from listing 11.12, pro-
vides a snippet of code with the minimal handler. Inject it into main.rs. An empty
function implies that any exception is fatal because none will be marked as the han-
dler. When an exception occurs, we don’t need to do anything.

4 #![feature(lang_items)]

18 #[lang = "eh_personality"]
19 #[no_mangle]
20 pub extern "C" fn eh_personality() { }

Listing 11.11 Minimalist exception-handling personality routine

380 CHAPTER 11 Kernel
NOTE What is a language item? Language items are elements of Rust imple-
mented as libraries outside of the compiler itself. As we strip away the stan-
dard library with #[no_std], we’ll need to implement some of its functionality
ourselves.

Admittedly, that’s a lot of work to do nothing. But at least we can be comforted know-
ing that we are doing nothing in the right way.

11.4.2 fledgeos-2 source code

fledgeos-2 builds on fledgeos-0 and fledgeos-1. Its src/main.rs file includes the addi-
tions from the previous listing. The new file is presented in the following listing and is
available to download from code/ch11/ch11-fledgeos-2/src/main.rs. To compile the
project, repeat the instructions in section 11.2.1, replacing references to fledgeos-0
with fledgeos-2.

 1 #![no_std]
 2 #![no_main]
 3 #![feature(core_intrinsics)]
 4 #![feature(lang_items)]
 5
 6 use core::intrinsics;
 7 use core::panic::PanicInfo;
 8 use x86_64::instructions::{hlt};
 9
10 #[panic_handler]
11 #[no_mangle]
12 pub fn panic(_info: &PanicInfo) -> ! {
13 unsafe {
14 intrinsics::abort();
15 }
16 }
17
18 #[lang = "eh_personality"]
19 #[no_mangle]
20 pub extern "C" fn eh_personality() { }
21
22 #[no_mangle]
23 pub extern "C" fn _start() -> ! {
24 let framebuffer = 0xb8000 as *mut u8;
25
26 unsafe {
27 framebuffer
28 .offset(1)
29 .write_volatile(0x30);
30 }
31
32 loop {
33 hlt();
34 }

Listing 11.12 Source code for fledgeos-2

381fledgeos-3: Text output
11.5 fledgeos-3: Text output
Let’s write some text to the screen. That way, if we really do encounter a panic, we can
report it properly. This section explains the process of sending text to the frame buf-
fer in more detail. Figure 11.2 shows the output from running fledgeos-3.

11.5.1 Writing colored text to the screen

To start, we’ll create a type for the color numeric constants that are used later in list-
ing 11.16. Using an enum rather than defining a series of const values provides
enhanced type safety. In some sense, it adds a semantic relationship between the val-
ues. These are all treated as members of the same group.

 The following listing defines an enum that represents the VGA-compatible text
mode color palette. The mapping between bit patterns and colors is defined by the
VGA standard, and our code should comply with it.

 9 #[allow(unused)]
10 #[derive(Clone,Copy)]
11 #[repr(u8)]
12 enum Color {
13 Black = 0x0, White = 0xF,
14 Blue = 0x1, BrightBlue = 0x9,
15 Green = 0x2, BrightGreen = 0xA,
16 Cyan = 0x3, BrightCyan = 0xB,

Listing 11.13 Representing related numeric constants as an enum

Figure 11.2 Output produced by fledgeos-3

We won’t be using every
color variant in our code, so
we can silence warnings.

Opts into copy semantics

Instructs the compiler to use a
single byte to represent the values

382 CHAPTER 11 Kernel
17 Red = 0x4, BrightRed = 0xC,
18 Magenta = 0x5, BrightMagenta = 0xD,
19 Brown = 0x6, Yellow = 0xE,
20 Gray = 0x7, DarkGray = 0x8
21 }

11.5.2 Controlling the in-memory representation of enums

We’ve been content to allow the compiler to determine how an enum is represented.
But there are times when we need to pull in the reins. External systems often demand
that our data matches their requirements.

 Listing 11.13 provides an example of fitting the colors from the VGA-compatible
text mode palette enum into a single u8. It removes any discretion from the compiler
about which bit pattern (formally called the discriminant) to associate with particular
variants. To prescribe a representation, add the repr attribute. You are then able to
specify any integer type (i32, u8, i16, u16,…), as well as some special cases.

 Using a prescribed representation has some disadvantages. In particular, it reduces
your flexibility. It also prevents Rust from making space optimizations. Some enums,
those with a single variant, require no representation. These appear in source code
but occupy zero space in the running program.

11.5.3 Why use enums?

You could model colors differently. For instance, it’s possible to create numeric con-
stants that look identical in memory. The following shows one such possibility:

const BLACK: u8 = 0x0;
const BLUE: u8 = 0x1;
// ...

Using an enum adds an extra guard. It becomes much more difficult to use an illegal
value in our code than if we were using an u8 directly. You will see this demonstrated
when the Cursor struct is introduced in listing 11.17.

11.5.4 Creating a type that can print to the VGA frame buffer

To print to the screen, we’ll use a Cursor struct that handles the raw memory manipu-
lation and can convert between our Color type and what is expected by VGA. As the
following listing shows, this type manages the interface between our code and the
VGA frame buffer. This listing is another excerpt from listing 11.16.

25 struct Cursor {
26 position: isize,
27 foreground: Color,
28 background: Color,
29 }
30

Listing 11.14 Definition and methods for Cursor

383fledgeos-3: Text output
31 impl Cursor {
32 fn color(&self) -> u8 {
33 let fg = self.foreground as u8;
34 let bg = (self.background as u8) << 4;
35 fg | bg
36 }
37
38 fn print(&mut self, text: &[u8]) {
39 let color = self.color();
40
41 let framebuffer = 0xb8000 as *mut u8;
42
43 for &character in text {
44 unsafe {
45 framebuffer.offset(self.position).write_volatile(character);
46 framebuffer.offset(self.position + 1).write_volatile(color);
47 }
48 self.position += 2;
49 }
50 }
51 }

11.5.5 Printing to the screen

Making use of Cursor involves setting its position and then sending a reference to
Cursor.print(). The following listing, an excerpt from listing 11.16, expands the
_start() function to also print to the screen.

67 #[no_mangle]
68 pub extern "C" fn _start() -> ! {
69 let text = b"Rust in Action";
70
71 let mut cursor = Cursor {
72 position: 0,
73 foreground: Color::BrightCyan,
74 background: Color::Black,
75 };
76 cursor.print(text);
77
78 loop {
79 hlt();
80 }
81 }

11.5.6 fledgeos-3 source code

fledgeos-3 continues to build on fledgeos-0, fledgeos-1, and fledgeos-2. Its src/main.rs
file includes the additions from the this section. The complete file is presented in the
following listing and is available to download from code/ch11/ch11-fledgeos-3/src/
main.rs. To compile the project, repeat the instructions in section 11.2.1, replacing
references to fledgeos-0 with fledgeos-3.

Listing 11.15 Demonstrating printing to the screen

Uses the foreground color as a
base, which occupies the lower 4
bits. Shift the background color
left to occupy the higher bits, then
merge these together.

For expediency, the input uses
a raw byte stream rather than
a type that guarantees the
correct encoding.

384 CHAPTER 11 Kernel
 1 #![feature(core_intrinsics)]
 2 #![feature(lang_items)]
 3 #![no_std]
 4 #![no_main]
 5
 6 use core::intrinsics;
 7 use core::panic::PanicInfo;
 8
 9 use x86_64::instructions::{hlt};
10
11 #[allow(unused)]
12 #[derive(Clone,Copy)]
13 #[repr(u8)]
14 enum Color {
15 Black = 0x0, White = 0xF,
16 Blue = 0x1, BrightBlue = 0x9,
17 Green = 0x2, BrightGreen = 0xA,
18 Cyan = 0x3, BrightCyan = 0xB,
19 Red = 0x4, BrightRed = 0xC,
20 Magenta = 0x5, BrightMagenta = 0xD,
21 Brown = 0x6, Yellow = 0xE,
22 Gray = 0x7, DarkGray = 0x8
23 }
24
25 struct Cursor {
26 position: isize,
27 foreground: Color,
28 background: Color,
29 }
30
31 impl Cursor {
32 fn color(&self) -> u8 {
33 let fg = self.foreground as u8;
34 let bg = (self.background as u8) << 4;
35 fg | bg
36 }
37
38 fn print(&mut self, text: &[u8]) {
39 let color = self.color();
40
41 let framebuffer = 0xb8000 as *mut u8;
42
43 for &character in text {
44 unsafe {
45 framebuffer.offset(self.position).write_volatile(character);
46 framebuffer.offset(self.position + 1).write_volatile(color);
47 }
48 self.position += 2;
49 }
50 }
51 }
52
53 #[panic_handler]

Listing 11.16 FledgeOS now prints text to the screen

385fledgeos-4: Custom panic handling
54 #[no_mangle]
55 pub fn panic(_info: &PanicInfo) -> ! {
56 unsafe {
57 intrinsics::abort();
58 }
59 }
60
61 #[lang = "eh_personality"]
62 #[no_mangle]
63 pub extern "C" fn eh_personality() { }
64
65 #[no_mangle]
66 pub extern "C" fn _start() -> ! {
67 let text = b"Rust in Action";
68
69 let mut cursor = Cursor {
70 position: 0,
71 foreground: Color::BrightCyan,
72 background: Color::Black,
73 };
74 cursor.print(text);
75
76 loop {
77 hlt();
78 }
79 }

11.6 fledgeos-4: Custom panic handling
Our panic handler, repeated in the following snippet, calls core::intrinsics::
abort(). This shuts down the computer immediately, without providing any further
input:

#[panic_handler]
#[no_mangle]
pub fn panic(_info: &PanicInfo) -> ! {
 unsafe {
 intrinsics::abort();
 }
}

11.6.1 Implementing a panic handler that reports the error to the user

For the benefit of anyone doing embedded development or wanting to execute Rust
on microcontrollers, it’s important to learn how to report where a panic occurs. A
good place to start is with core::fmt::Write. That trait can be associated with the
panic handler to display a message, as figure 11.3 shows.

11.6.2 Reimplementing panic() by making use of core::fmt::Write

The output shown by figure 11.3 is produced by listing 11.17. panic() now goes
through a two-stage process. In the first stage, panic() clears the screen. The second
stage involves the core::write! macro. core::write! takes a destination object as its

386 CHAPTER 11 Kernel
first argument (cursor), which implements the core::fmt::Write trait. The follow-
ing listing, an excerpt from listing 11.19, provides a panic handler that reports that an
error has occurred using this process.

61 pub fn panic(info: &PanicInfo) -> ! {
62 let mut cursor = Cursor {
63 position: 0,
64 foreground: Color::White,
65 background: Color::Red,
66 };
67 for _ in 0..(80*25) {
68 cursor.print(b" ");
69 }
70 cursor.position = 0;
71 write!(cursor, "{}", info).unwrap();
72
73 loop {}
74 }

11.6.3 Implementing core::fmt::Write

Implementing core::fmt::Write involves calling one method: write_str(). The
trait defines several others, but the compiler can autogenerate these once an imple-
mentation of write_str() is available. The implementation in the following listing

Listing 11.17 Clearing the screen and printing the message

Figure 11.3 Displaying a message when a panic occurs

Clears the screen by
filling it with red

Resets the position
of the cursor

Prints PanicInfo
to the screen

Spins in an infinite loop, allowing
the user to read the message and
restart the machine manually

387fledgeos-4: Custom panic handling
reuses the print() method and converts the UTF-8 encoded &str into &[u8] with the
to_bytes() method. The code for this listing is in ch11/ch11-fledgeos-4/src/main.rs.

54 impl fmt::Write for Cursor {
55 fn write_str(&mut self, s: &str) -> fmt::Result {
56 self.print(s.as_bytes());
57 Ok(())
58 }
59 }

11.6.4 fledge-4 source code

The following listing shows the user-friendly panic-handling code for FledgeOS. You’ll
find the source for this listing in ch11/ch11-fledgeos-4/src/main.rs. As with earlier
versions, to compile the project, repeat the instructions at section 11.2.1 but replace
references to fledgeos-0 with fledgeos-4.

 1 #![feature(core_intrinsics)]
 2 #![feature(lang_items)]
 3 #![no_std]
 4 #![no_main]
 5
 6 use core::fmt;
 7 use core::panic::PanicInfo;
 8 use core::fmt::Write;
 9
10 use x86_64::instructions::{hlt};
11
12 #[allow(unused)]
13 #[derive(Copy, Clone)]
14 #[repr(u8)]
15 enum Color {
16 Black = 0x0, White = 0xF,
17 Blue = 0x1, BrightBlue = 0x9,
18 Green = 0x2, BrightGreen = 0xA,
19 Cyan = 0x3, BrightCyan = 0xB,
20 Red = 0x4, BrightRed = 0xC,
21 Magenta = 0x5, BrightMagenta = 0xD,
22 Brown = 0x6, Yellow = 0xE,
23 Gray = 0x7, DarkGray = 0x8
24 }
25
26 struct Cursor {
27 position: isize,
28 foreground: Color,
29 background: Color,
30 }
31
32 impl Cursor {

Listing 11.18 Implementing core::fmt::Write for the Cursor type

Listing 11.19 Full code listing of FledgeOS with complete panic handling

388 CHAPTER 11 Kernel
33 fn color(&self) -> u8 {
34 let fg = self.foreground as u8;
35 let bg = (self.background as u8) << 4;
36 fg | bg
37 }
38
39 fn print(&mut self, text: &[u8]) {
40 let color = self.color();
41
42 let framebuffer = 0xb8000 as *mut u8;
43
44 for &character in text {
45 unsafe {
46 framebuffer.offset(self.position).write_volatile(character);
47 framebuffer.offset(self.position + 1).write_volatile(color);
48 }
49 self.position += 2;
50 }
51 }
52 }
53
54 impl fmt::Write for Cursor {
55 fn write_str(&mut self, s: &str) -> fmt::Result {
56 self.print(s.as_bytes());
57 Ok(())
58 }
59 }
60
61 #[panic_handler]
62 #[no_mangle]
63 pub fn panic(info: &PanicInfo) -> ! {
64 let mut cursor = Cursor {
65 position: 0,
66 foreground: Color::White,
67 background: Color::Red,
68 };
69 for _ in 0..(80*25) {
70 cursor.print(b" ");
71 }
72 cursor.position = 0;
73 write!(cursor, "{}", info).unwrap();
74
75 loop { unsafe { hlt(); }}
76 }
77
78 #[lang = "eh_personality"]
79 #[no_mangle]
80 pub extern "C" fn eh_personality() { }
81
82 #[no_mangle]
83 pub extern "C" fn _start() -> ! {
84 panic!("help!");
85 }

389Summary
Summary
 Writing a program that is intended to run without an operating system can feel

like programming in a barren desert. Functionality that you take for granted,
such as dynamic memory or multithreading, is not available to you.

 In environments such as embedded systems that do not have dynamic memory
management, you will need to avoid the Rust standard library with the #![no_std]
annotation.

 When interfacing with external components, naming symbols becomes signif-
icant. To opt out of Rust’s name-mangling facilities, use the #![no_mangle]
attribute.

 Rust’s internal representations can be controlled through annotations. For exam-
ple, annotating an enum with #![repr(u8]) forces the values to be packed into a
single byte. If this doesn’t work, Rust refuses to compile the program.

 Raw pointer manipulation is available to you, but type-safe alternatives exist.
When it’s practical to do so, use the offset() method to correctly calculate the
number of bytes to traverse through the address space.

 The compiler’s internals are always accessible to you at the cost of requiring a
nightly compiler. Access compiler intrinsics like intrinsics::abort() to pro-
vide functionality to the program that’s ordinarily inaccessible.

 cargo should be thought of as an extensible tool. It sits at the center of the
Rust programmer’s workflow, but its standard behavior can be changed when
necessary.

 To access raw machine instructions, such as HTL, you can use helper crates like
x86_64 or rely on inline assembly.

 Don’t be afraid to experiment. With modern tools like QEMU, the worst that can
happen is that your tiny OS crashes, and you’ll need to run it again instantly.

Signals, interrupts,
and exceptions
This chapter describes the process by which the outside world communicates with
your operating system (OS). The network constantly interrupts program execution
when bytes are ready to be delivered. This means that after connecting to a database
(or at any other time), the OS can demand that your application deal with a message.
This chapter describes this process and how to prepare your programs for it.

 In chapter 9, you learned that a digital clock periodically notifies the OS that
time has progressed. This chapter explains how those notifications occur. It also
introduces the concept of multiple applications running at the same time via the
concept of signals. Signals emerged as part of the UNIX OS tradition. These can be
used to send messages between different running programs.

 We’ll address both concepts—signals and interrupts—together, as the program-
ming models are similar. But it’s simpler to start with signals. Although this chapter

This chapter covers
 What interrupts, exceptions, traps, and faults are

 How device drivers inform applications that data
is ready

 How to transmit signals between running
applications
390

391Glossary
focuses on the Linux OS running on x86 CPUs, that’s not to say that users of other
operating systems won’t be able to follow along.

12.1 Glossary
Learning how CPUs, device drivers, applications, and operating systems interact is dif-
ficult. There is a lot of jargon to take in. To make matters worse, the terms all look sim-
ilar, and it certainly does not help that these are often used interchangeably. Here are
some examples of the jargon that is used in this chapter. Figure 12.1 illustrates how
these interrelate:

 Abort—An unrecoverable exception. If an application triggers an abort, the
application terminates.

 Fault—A recoverable exception that is expected in routine operations such as a
page fault. Page faults occur when a memory address is not available and data
must be fetched from the main memory chip(s). This process is known as vir-
tual memory and is explained in section 4 of chapter 6.

 Exception—Exception is an umbrella term that incudes aborts, faults, and traps.
Formally referred to as synchronous interrupts, exceptions are sometimes
described as a form of an interrupt.

 Hardware interrupt—An interrupt generated by a device such as a keyboard or
hard disk controller. Typically used by devices to notify the CPU that data is
available to be read from the device.

 Interrupt—A hardware-level term that is used in two senses. It can refer only to
synchronous interrupts, which include hardware and software interrupts. Depend-
ing on context, it can also include exceptions. Interrupts are usually handled by
the OS.

 Signal—An OS-level term for interruptions to an application’s control flow. Sig-
nals are handled by applications.

 Software interrupt—An interrupt generated by a program. Within Intel’s x86
CPU family, programs can trigger an interrupt with the INT instruction. Among
other uses of this facility, debuggers use software interrupts to set breakpoints.

 Trap—A recoverable exception such as an integer overflow detected by the
CPU. Integer overflow is explained in section 5.2.

NOTE The meaning of the term exception may differ from your previous pro-
gramming experience. Programming languages often use the term exception
to refer to any error, whereas the term has a specialized meaning when refer-
ring to CPUs.

12.1.1 Signals vs. interrupts

The two concepts that are most important to distinguish between are signals and
interrupts. A signal is a software-level abstraction that is associated with an OS. An inter-
rupt is a CPU-related abstraction that is closely associated with the system’s hardware.

392 CHAPTER 12 Signals, interrupts, and exceptions
Signals are a form of limited interprocess communication. They don’t contain con-
tent, but their presence indicates something. They’re analogous to a physical, audible
buzzer. The buzzer doesn’t provide content, but the person who presses it still knows
what’s intended as it makes a very jarring sound. To add confusion to the mix, signals
are often described as software interrupts. This chapter, however, avoids the use of the
term interrupt when referring to a signal.

 There are two forms of interrupts, which differ in their origin. One form of inter-
rupt occurs within the CPU during its processing. This is the result of attempting to
process illegal instructions and trying to access invalid memory addresses. This first
form is known technically as a synchronous interrupt, but you may have heard it referred
to by its more common name, exception.

 The second form of interrupt is generated by hardware devices like keyboards and
accelerometers. This is what’s commonly implied by the term interrupt. This can
occur at any time and is formally known as an asynchronous interrupt. Like signals, this
can also be generated within software.

 Interrupts can be specialized. A trap is an error detected by the CPU, so it gives the
OS a chance to recover. A fault is another form of a recoverable problem. If the CPU is
given a memory address that it can’t read from, it notifies the OS and asks for an
updated address.

Exceptions

Faults

Recoverable

Page fault

Traps

Recoverable

Integer overflow

Aborts

Unrecoverable

Double fault

(second fault

occurred while

handling first)

Interrupts

Interrupts

Devices reporting

that data is ready

Software

defined

CPU given INT

instruction

(on x86)

Hardware

defined

Intel defines three forms

of exception classes.

Often, the single term is used

to cover both concepts.

Figure 12.1 A visual taxonomy of how the terms interrupt, exception, trap, and fault interact within
Intel’s x86 family of CPUs. Note that signals do not appear within this figure. Signals are not interrupts.

393How interrupts affect applications
 Interrupts force an application’s control flow to change, whereas many signals can
be ignored if desired. Upon receiving an interrupt, the CPU jumps to handler code,
irrespective of the current state of the program. The location of the handler code is
predefined by the BIOS and OS during a system’s bootup process.

12.2 How interrupts affect applications
Let’s work through this challenge by considering a small code example. The following
listing shows a simple calculation that sums two integers.

1 fn add(a: i32, b:i32) -> i32 {
2 a + b
3 }
4
5 fn main() {
6 let a = 5;
7 let b = 6;
8 let c = add(a,b);
9 }

Irrespective of the number of hardware interrupts, c is always calculated. But the pro-
gram’s wall clock time becomes nondeterministic because the CPU performs different
tasks every time it runs.

Treating signals as interrupts
Handling interrupts directly means manipulating the OS kernel. Because we would
prefer not to do that in a learning environment, we’ll play fast and loose with the ter-
minology. The rest of this chapter, therefore, treats signals as interrupts.

Why simplify things? Writing OS components involves tweaking the kernel. Breaking
things there means that our system could become completely unresponsive without
a clear way to fix anything. From a more pragmatic perspective, avoiding tweaks to
the kernel means that we’ll avoid learning a whole new compiler toolchain.

To our advantage, code that handles signals looks similar to code that handles inter-
rupts. Practicing with signals allows us to keep any errors within our code constrained
to our application rather than risk bringing the whole system down. The general pat-
tern is as follows:

1 Model your application’s standard control flow.
2 Model the interrupted control flow and identify resources that need to be cleanly

shut down, if required.
3 Write the interrupt/signal handler to update some state and return quickly.
4 You will typically delegate time-consuming operations by only modifying a

global variable that is regularly checked by the main loop of the program.
5 Modify your application’s standard control flow to look for the GO/NO GO flag

that a signal handler may have changed.

Listing 12.1 A program that calculates the sum of two integers

394 CHAPTER 12 Signals, interrupts, and exceptions
 When an interrupt occurs, the CPU immediately halts execution of the program
and jumps to the interrupt handler. The next listing (illustrated in figure 12.2) details
what happens when an interrupt occurs between lines 7 and 8 in listing 12.1.

 1 #[allow(unused)]
 2 fn interrupt_handler() {
 3 / / ..
 4 }
 5
 6 fn add(a: i32, b:i32) -> i32 {
 7 a + b
 8 }
 9
10 fn main() {
11 let a = 5;
12 let b = 6;
13
14 / / Key pressed on keyboard!
15 interrupt_handler()
16
17 let c = add(a,b);
18 }

Listing 12.2 Depicting the flow of listing 12.1 as it handles an interrupt

Although presented in
this listing as an extra
function, the interrupt
handler is typically
defined by the OS.

let b = 6;

let a = 5;
main()

.... add(a,b)

add(a: i32, b: i32) -> i32

let c = ...

a + b

RETURN

Normal program execution
Control flow in the normal case

operates in a linear sequence

of instructions. Function calls

and return statements do jump

a CPU around in memory, but

the order of events can be

predetermined.

let b = 6;

let a = 5;
main()

.... add(a,b)

add(a: i32, b: i32) -> i32

let c = ...

a + b

RETURN

Interrupted program execution
When a hardware interrupt

occurs, the program is not

unaffected directly, although

there may be a negligible

performance impact as the

operating system must deal

with the hardware.

?

Program is unaware
of what the CPU is doing.
Once it is finished with
other tasks, execution
proceeds as normal.

Dashes mark
the CPU’s
progression
through the
program.

Return instruction
is implicit in Rust.

Figure 12.2 Using addition to demonstrate control flow for handling signals

395Signal handling
One important point to remember is that, from the program’s perspective, little changes.
It isn’t aware that its control flow has been interrupted. Listing 12.1 is still an accurate
representation of the program.

12.3 Software interrupts
Software interrupts are generated by programs sending specific instructions to the
CPU. To do this in Rust, you can invoke the asm! macro. The following code, available
at ch12/asm.rs, provides a brief view of the syntax:

#![feature(asm)]

use std::asm;

fn main() {
 unsafe {
 asm!("int 42");
 }
}

Running the compiled executable presents the following error from the OS:

$ rustc +nightly asm.rs
$./asm
Segmentation fault (core dumped)

As of Rust 1.50, the asm! macro is unstable and requires that you execute the nightly
Rust compiler. To install the nightly compiler, use rustup:

$ rustup install nightly

12.4 Hardware interrupts
Hardware interrupts have a special flow. Devices interface with a specialized chip,
known as the Programmable Interrupt Controller (PIC), to notify the CPU. Figure 12.3 pro-
vides a view of how interrupts flow from hardware devices to an application.

12.5 Signal handling
Signals require immediate attention. Failing to handling a signal typically results in
the application being terminated.

12.5.1 Default behavior

Sometimes the best approach is to let the system’s defaults do the work. Code that you
don’t need to write is code that’s free from bugs that you inadvertently cause.

 The default behavior for most signals is shutting down the application. When an
application does not provide a special handler function (we’ll learn how to do that in
this chapter), the OS considers the signal to be an abnormal condition. When an OS
detects an abnormal condition within an application, things don’t end well for the
application—it terminates the application. Figure 12.4 depicts this scenario.

Enables an
unstable feature

396 CHAPTER 12 Signals, interrupts, and exceptions
Your application can receive three common signals. The following lists them and their
intended actions:

 SIGINT—Terminates the program (usually generated by a person)
 SIGTERM—Terminates the program (usually generated by another program)
 SIGKILL—Immediately terminates the program without the ability to recover

You’ll find many other less common signals. For your convenience, a fuller list is pro-
vided in table 12.2.

 You may have noticed that the three examples listed here are heavily associated
with terminating a running program. But that’s not necessarily the case.

Keyboard

Microphone

Network

...

CPU

Programmable

interrupt

controller (PIC)

Computer’s motherboard

Message received!
PIC decides whether
to notify CPU
immediately or wait
to be asked for data.

Key pressed!
Microchip inside
keyboard converts
electrical impluse
to a value.u32

Interrupted!
Save register state and
jump to the interupt handler
instruction, handing control
to the operating system.

Software

OS App

Kernel ready!
Request data
from keyboard
controller.

Blissfully
unaware;
proceeding
as normal

Figure 12.3 How applications are notified of an interrupt generated from a hardware device. Once the OS has
been notified that data is ready, it then directly communicates with the device (in this case, the keyboard) to
read the data into its own memory.

Figure 12.4 An application defending itself from marauding hoards of unwanted signals.
Signal handlers are the friendly giants of the computing world. They generally stay out of the
way but are there when your application needs to defend its castle. Although not part of
everyday control flow, signal handlers are extremely useful when the time is right. Not all
signals can be handled. SIGKILL is particularly vicious.

397Signal handling
12.5.2 Suspend and resume a program’s operation

There are two special signals worth mentioning: SIGSTOP and SIGCONT. SIGSTOP halts
the program’s execution, and it remains suspended until it receives SIGCONT. UNIX
systems use this signal for job control. It’s also useful to know about if you want to
manually intervene and halt a running application but would like the ability to recover
at some time in the future.

 The following snippet shows the structure for the sixty project that we’ll develop in
this chapter. To download the project, enter these commands in the console:

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
$ cd rust-in-action/ch12/ch12-sixty

To create the project manually, set up a directory structure that resembles the follow-
ing and populate its contents from listings 12.3 and 12.4:

ch12-sixty
├── src
│ └── main.rs
└── Cargo.toml

The following listing shows the initial crate metadata for the sixty project. The source
code for this listing is in the ch12/ch12-sixty/ directory.

[package]
name = "sixty"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]

[dependencies]

The next listing provides the code to build a basic application that lives for 60 seconds
and prints its progress along the way. You’ll find the source for this listing in ch12/
ch12-sixty/src/main.rs.

 1 use std::time;
 2 use std::process;
 3 use std::thread::{sleep};
 4
 5 fn main() {
 6 let delay = time::Duration::from_secs(1);
 7
 8 let pid = process::id();
 9 println!("{}", pid);
10
11 for i in 1..=60 {
12 sleep(delay);

Listing 12.3 Crate metadata for the sixty project

Listing 12.4 A basic application that receives SIGSTOP and SIGCONT

See listing 12.4.

See listing 12.3.

398 CHAPTER 12 Signals, interrupts, and exceptions
13 println!(". {}", i);
14 }
15 }

Once the code from listing 12.4 is saved to disk, two consoles open. In the first, exe-
cute cargo run. A 3–5 digit number appears, followed by a counter that increments by
the second. The first line number is the PID or process ID. Table 12.1 shows the opera-
tion and expected output.

The program flow in table 12.1 follows:

1 In console 1, move to the project directory (created from listings 12.3 and 12.4).
2 Compile and run the project.

cargo provides debugging output that is omitted here. When running, the
sixty program prints the PID, and then prints some numbers to the console
every second. Because it was the PID for this invocation, 23221 appears as out-
put in the table.

3 In console 2, execute the kill command, specifying -SIGSTOP.
If you are unfamiliar with the shell command kill, its role is to send signals.

It’s named after its most common role, terminating programs with either SIGKILL

Table 12.1 How processes can be suspended and resumed with SIGSTOP and SIGCONT

Step Console 1 Console 2

Executes application Sends signals

1 $ cd ch12/ch12-sixty

2 $ cargo run
23221
. 1
. 2
. 3
. 4

3 $ kill -SIGSTOP 23221

4 [1]+ Stopped cargo run
$

5 $ kill -SIGCONT 23221

6 . 5
. 6
. 7
. 8⋮
. 60

399Signal handling
or SIGTERM. The numeric argument (23221) must match the PID provided in
step 2.

4 Console 1 returns to the command prompt as there is no longer anything run-
ning in the foreground.

5 Resume the program by sending SIGCONT to the PID provided in step 2.
6 The program resumes counting. It terminates when it hits 60, unless inter-

rupted by Ctrl-C (SIGINT).

SIGSTOP and SIGCONT are interesting special cases. Let’s continue by investigating
more typical signal behavior.

12.5.3 Listing all signals supported by the OS

What are the other signals and what are their default handlers? To find the answer, we
can ask the kill command to provide that information:

$ kill -l
 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP
 6) SIGABRT 7) SIGEMT 8) SIGFPE 9) SIGKILL 10) SIGBUS
11) SIGSEGV 12) SIGSYS 13) SIGPIPE 14) SIGALRM 15) SIGTERM
16) SIGURG 17) SIGSTOP 18) SIGTSTP 19) SIGCONT 20) SIGCHLD
21) SIGTTIN 22) SIGTTOU 23) SIGIO 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGPWR 30) SIGUSR1
31) SIGUSR2 32) SIGRTMAX

That’s a lot, Linux! To make matters worse, few signals have standardized behavior.
Thankfully, most applications don’t need to worry about setting handlers for many of
these signals (if any). Table 12.1 shows a much tighter list of signals. These are more
likely to be encountered in day-to-day programming.

Table 12.2 List of common signals, their default actions, and shortcuts for sending them from the
command line

Signal Read as Default action Comment Shortcut

SIGHUP Hung up Terminate Originally from telephone-
based digital communications.
Now often sent to background
applications (daemons/ser-
vices) to request that these
reread their configuration
files. Sent to running pro-
grams when you log out from a
shell.

Ctrl-D

SIGINT Interrupt (or per-
haps interactive)

Terminate User-generated signal to ter-
minate a running application.

Ctrl-C

SIGTERM Terminate Terminate Asks application to gracefully
terminate.

-l stands for list.

400 CHAPTER 12 Signals, interrupts, and exceptions
NOTE SIGKILL and SIGSTOP have special status: these cannot be handled or
blocked by the application. Programs can avoid the others.

12.6 Handling signals with custom actions
The default actions for signals are fairly limited. By default, receiving a signal tends to
end badly for applications. For example, if external resources such as database connec-
tions are left open, they might not be cleaned up properly when the application ends.

 The most common use case for signal handlers is to allow an application to shut
down cleanly. Some common tasks that might be necessary when an application shuts
down include

 Flushing the hard disk drive to ensure that pending data is written to disk
 Closing any network connections
 Deregistering from any distributed scheduler or work queue

To stop the current workload and shut down, a signal handler is required. To set up a
signal handler, we need to create a function with the signature f(i32) -> (). That is,
the function needs to accept an i32 integer as its sole argument and returns no value.

 This poses some software engineering issues. The signal handler isn’t able to
access any information from the application except which signal was sent. Therefore,
because it doesn’t know what state anything is in, it doesn’t know what needs shutting
down beforehand.

 There are some additional restrictions in addition to the architectural one. Signal
handlers are constrained in time and scope. These must also act quickly within a sub-
set of functionality available to general code for these reasons:

 Signal handlers can block other signals of the same type from being handled.
 Moving fast reduces the likelihood of operating alongside another signal han-

dler of a different type.

SIGKILL Kill Terminate This action is unstoppable.

SIGQUIT Quit Writes memory to disk as a
core dump, then terminates.

Ctrl-\

SIGTSTP Terminal stop Pause execution The terminal requests the
application to stop.

Ctrl-Z

SIGSTOP Stop Pause execution This action is unstoppable.

SIGCONT Continue Resume execution
when paused

Table 12.2 List of common signals, their default actions, and shortcuts for sending them from the
command line (continued)

Signal Read as Default action Comment Shortcut

401Handling signals with custom actions
Signal handlers have reduced scope in what they’re permitted to do. For example,
they must avoid executing any code that might itself generate signals.

 To wriggle out of this constrained environment, the ordinary approach is to use a
Boolean flag as a global variable that is regularly checked during a program’s execution.
If the flag is set, then you can call a function to shutdown the application cleanly within
the context of the application. For this pattern to work, there are two requirements:

 The signal handler’s sole responsibility is to mutate the flag.
 The application must regularly check the flag to detect whether the flag has

been modified.

To avoid race conditions caused by multiple signal handlers running at the same time,
signal handlers typically do little. A common pattern is to set a flag via a global variable.

12.6.1 Global variables in Rust

Rust facilitates global variables (variables accessible anywhere within the program) by
declaring a variable with the static keyword in global scope. Suppose we want to cre-
ate a global value SHUT_DOWN that we can set to true when a signal handler believes it’s
time to urgently shut down. We can use this declaration:

static mut SHUT_DOWN: bool = false;

NOTE static mut is read as mutable static, irrespective of how grammatically
contorted that is.

Global variables present an issue for Rust programmers. Accessing these (even just for
reading) is unsafe. This means that the code can become quite cluttered if it’s
wrapped in unsafe blocks. This ugliness is a signal to wary programmers—avoid
global state whenever possible.

 Listing 12.6 presents a example of a static mut variable that reads from line 12
and writes to lines 7–9. The call to rand::random() on line 8 produces Boolean val-
ues. Output is a series of dots. About 50% of the time, you’ll receive output that looks
like what’s shown in the following console session:1

$ git clone https:/ /github.com/rust-in-action/code rust-in-action
$ cd rust-in-action/ch12/ch2-toy-global
$ cargo run -q
.

The following listing provides the metadata for listing 12.6. You can access its source
code in ch12/ch12-toy-global/Cargo.toml.

1 Output assumes a fair random number generator, which Rust uses by default. This assumption holds as long
as you trust your operating system’s random number generator.

402 CHAPTER 12 Signals, interrupts, and exceptions
[package]
name = "ch12-toy-global"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
rand = "0.6"

The following listing presents our toy example. Its source code is in ch12/ch12-toy-
global/src/main.rs.

 1 use rand;
 2
 3 static mut SHUT_DOWN: bool = false;
 4
 5 fn main() {
 6 loop {
 7 unsafe {
 8 SHUT_DOWN = rand::random();
 9 }
10 print!(".");
11
12 if unsafe { SHUT_DOWN } {
13 break
14 };
15 }
16 println!()
17 }

12.6.2 Using a global variable to indicate that shutdown
has been initiated

Given that signal handlers must be quick and simple, we’ll do the minimal amount of
possible work. In the next example, we’ll set a variable to indicate that the program
needs to shut down. This technique is demonstrated by listing 12.8, which is struc-
tured into these three functions:

 register_signal_handlers()—Communicates to the OS via libc, the signal
handler for each signal. This function makes use of a function pointer, which
treats a function as data. Function pointers are explained in section 11.7.1.

 handle_signals()—Handles incoming signals. This function is agnostic as to
which signal is sent, although we’ll only deal with SIGTERM.

 main()—Initializes the program and iterates through a main loop.

When run, the resulting executable produces a trace of where it is. The following con-
sole session shows the trace:

Listing 12.5 Crate metadata for listing 12.6

Listing 12.6 Accessing global variables (mutable statics) in Rust

Reading from and writing
to a static mut variable
requires an unsafe block.

rand::random() is a shortcut that
calls rand::thread_rng().gen() to
produce a random value. The
required type is inferred from
the type of SHUT_DOWN.

403Handling signals with custom actions
$ git clone https:/ /github.com/rust-in-action/code rust-in-action
$ cd rust-in-action/ch12/ch12-basic-handler
$ cargo run -q
1
SIGUSR1
2
SIGUSR1
3
SIGTERM
4
*

NOTE If the signal handler is not correctly registered, Terminated may appear
in the output. Make sure that you add a call to register_signal_handler()
early within main(). Listing 12.8 does this on line 38.

The following listing shows the package and dependency for listing 12.8. You can view
the source for this listing in ch12/ch12-basic-handler/Cargo.toml.

[package]
name = "ch12-handler"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
libc = "0.2"

When executed, the following listing uses a signal handler to modify a global variable.
The source for this listing is in ch12/ch12-basic-handler/src/main.rs.

 1 #![cfg(not(windows))]
 2
 3 use std::time::{Duration};
 4 use std::thread::{sleep};
 5 use libc::{SIGTERM, SIGUSR1};
 6
 7 static mut SHUT_DOWN: bool = false;
 8
 9 fn main() {
10 register_signal_handlers();
11
12 let delay = Duration::from_secs(1);
13
14 for i in 1_usize.. {
15 println!("{}", i);
16 unsafe {
17 if SHUT_DOWN {
18 println!("*");

Listing 12.7 Crate setup for listing 12.10

Listing 12.8 Creating a signal handler that modifies a global variable

I hope that you will
forgive the cheap
ASCII art explosion.

Indicates that
this code won’t
run on Windows

Must occur as soon as
possible; otherwise signals
will be incorrectly handled

Accessing a
mutable static
is unsafe.

404 CHAPTER 12 Signals, interrupts, and exceptions

Wit

attri
rustc w

that
func
are n

c

19 return;
20 }
21 }
22
23 sleep(delay);
24
25 let signal = if i > 2 {
26 SIGTERM
27 } else {
28 SIGUSR1
29 };
30
31 unsafe {
32 libc::raise(signal);
33 }
34 }
35 unreachable!();
36 }
37
38 fn register_signal_handlers() {
39 unsafe {
40 libc::signal(SIGTERM, handle_sigterm as usize);
41 libc::signal(SIGUSR1, handle_sigusr1 as usize);
42 }
43 }
44
45 #[allow(dead_code)]
46 fn handle_sigterm(_signal: i32) {
47 register_signal_handlers();
48
49 println!("SIGTERM");
50
51 unsafe {
52 SHUT_DOWN = true;
53 }
54 }
55
56 #[allow(dead_code)]
57 fn handle_sigusr1(_signal: i32) {
58 register_signal_handlers();
59
60 println!("SIGUSR1");
61 }

In the preceding listing, there is something special about the calls to libc::signal()
on lines 40 and 41. libc::signal takes a signal name (which is actually an integer)
and an untyped function pointer (known in C parlance as a void function pointer) as
arguments and associates the signal with the function. Rust’s fn keyword creates func-
tion pointers. handle_sigterm() and handle_sigusr1() both have the type fn(i32)
-> (). We need to cast these as usize values to erase any type information. Function
pointers are explained in more detail in section 12.7.1.

Calling libc functions is
unsafe; their effects are
outside of Rust’s control.

hout
this

bute,
arns

these
tions
ever

alled.

Reregisters
signals as soon
as possible to
minimize signal
changes affecting
the signal
handler itself

Modifying a
mutable static
is unsafe.

405Sending application-defined signals
12.7 Sending application-defined signals
Signals can be used as a limited form of messaging. Within your business rules, you
can create definitions for SIGUSR1 and SIGUSR2. These are unallocated by design. In
listing 12.8, we used SIGUSR1 to do a small task. It simply prints the string SIGUSR1. A
more realistic use of custom signals is to notify a peer application that some data is
ready for further processing.

12.7.1 Understanding function pointers and their syntax

Listing 12.8 includes some syntax that might be confusing. For example, on line 40
handle_sigterm as usize appears to cast a function as an integer.

 What is happening here? The address where the function is stored is being con-
verted to an integer. In Rust, the fn keyword creates a function pointer.

 Readers who have worked through chapter 5 will understand that functions are
just data. That is to say, functions are sequences of bytes that make sense to the CPU.
A function pointer is a pointer to the start of that sequence. Refer back to chapter 5,
especially section 5.7, for a refresher.

 A pointer is a data type that acts as a stand-in for its referent. Within an application’s
source code, pointers contain both the address of the value referred to as well as its
type. The type information is something that’s stripped away in the compiled binary.
The internal representation for pointers is an integer of usize. That makes pointers
very economical to pass around. In C, making use of function pointers can feel like
arcane magic. In Rust, they hide in plain sight.

Understanding the difference between const and static
Static and constant seem similar. Here is the main difference between them:

 static values appear in a single location in memory.
 const values can be duplicated in locations where they are accessed.

Duplicating const values can be a CPU-friendly optimization. It allows for data locality
and improved cache performance.

Why use confusingly similar names for two different things? It could be considered a
historical accident. The word static refers to the segment of the address space that
the variables live in. static values live outside the stack space, within the region
where string literals are held, near the bottom of the address space. That means
accessing a static variable almost certainly implies dereferencing a pointer.

The constant in const values refers to the value itself. When accessed from code,
the data might get duplicated to every location that it’s needed if the compiler
believes that this will result in faster access.

406 CHAPTER 12 Signals, interrupts, and exceptions
 Every fn declaration is actually declaring a function pointer. That means that list-
ing 12.9 is legal code and should print something similar to the following line:

$ rustc ch12/fn-ptr-demo-1.rs && ./fn-ptr-demo-1
noop as usize: 0x5620bb4af530

NOTE In the output, 0x5620bb4af530 is the memory address (in hexadeci-
mal notation) of the start of the noop() function. This number will be differ-
ent on your machine.

The following listing, available at ch12/noop.rs, shows how to cast a function to
usize. This demonstrates how usize can be used as a function pointer.

fn noop() {}

fn main() {
 let fn_ptr = noop as usize;

 println!("noop as usize: 0x{:x}", fn_ptr);
}

But what is the type of the function pointer created from fn noop()? To describe
function pointers, Rust reuses its function signature syntax. In the case of fn noop(),
the type is *const fn() -> (). This type is read as “a const pointer to a function that
takes no arguments and returns unit.” A const pointer is immutable. A unit is Rust’s
stand-in value for “nothingness.”

 Listing 12.10 casts a function pointer to usize and then back again. Its output,
shown in the following snippet, should show two lines that are nearly identical:

$ rustc ch12/fn-ptr-demo-2.rs && ./fn-ptr-demo-2
noop as usize: 0x55ab3fdb05c0
noop as *const T: 0x55ab3fdb05c0

NOTE These two numbers will be different on your machine, but the two
numbers will match each other.

fn noop() {}

fn main() {
 let fn_ptr = noop as usize;
 let typed_fn_ptr = noop as *const fn() -> ();

 println!("noop as usize: 0x{:x}", fn_ptr);
 println!("noop as *const T: {:p}", typed_fn_ptr);
}

Listing 12.9 Casting a function to usize

Listing 12.10 Casting a function to usize

Note the use of the
pointer format
modifier, {:p}.

407Ignoring signals
12.8 Ignoring signals
As noted in table 12.2, most signals terminate the running program by default. This
can be somewhat disheartening for the running program attempting to get its work
done. (Sometimes the application knows best!) For those cases, many signals can be
ignored.

 SIGSTOP and SIGKILL aside, the constant SIG_IGN can be provided to libc::
signal() instead of a function pointer. An example of its usage is provided by the
ignore project. Listing 12.11 shows its Cargo.toml file, and listing 12.12 shows src/
main.rs. These are both available from the ch12/ch12-ignore project directory. When
executed, the project prints the following line to the console:

$ cd ch12/ch12-ignore
$ cargo run -q
ok

The ignore project demonstrates how to ignore selected signals. On line 6 of listing
12.12, libc::SIG_IGN (short for signal ignore) is provided as the signal handler to
libc::signal(). The default behavior is reset on line 13. libc::signal() is called
again, this time with SIG_DFL (short for signal default) as the signal handler.

[package]
name = "ignore"
version = "0.1.0"
authors = ["Tim McNamara <author@rustinaction.com>"]
edition = "2018"

[dependencies]
libc = "0.2"

 1 use libc::{signal,raise};
 2 use libc::{SIG_DFL, SIG_IGN, SIGTERM};
 3
 4 fn main() {
 5 unsafe {
 6 signal(SIGTERM, SIG_IGN);
 7 raise(SIGTERM);
 8 }
 9
10 println!("ok");
11
12 unsafe {
13 signal(SIGTERM, SIG_DFL);
14 raise(SIGTERM);
15 }
16

Listing 12.11 Project metadata for ignore project

Listing 12.12 Ignoring signals with libc::SIG_IGN

Requires an unsafe block
because Rust does not control
what happens beyond the
function boundaries

Ignores the
SIGTERM signal

libc::raise() allows code
to make a signal; in this
case, to itself.

Resets SIGTERM
to its defaultTerminates

the program

408 CHAPTER 12 Signals, interrupts, and exceptions
17 println!("not ok");
18 }

12.9 Shutting down from deeply nested call stacks
What if our program is deep in the middle of a call stack and can’t afford to unwind?
When receiving a signal, the program might want to execute some cleanup code
before terminating (or being forcefully terminated). This is sometimes referred to as
nonlocal control transfer. UNIX-based operating systems provide some tools to enable
you to make use of that machinery via two system calls—setjmp and longjmp:

 setjmp sets a marker location.
 longjmp jumps back to the previously marked location.

Why bother with such programming gymnastics? Sometimes using low-level tech-
niques like these is the only way out of a tight spot. These approach the “Dark Arts” of
systems programming. To quote the manpage:

“setjmp() and longjmp() are useful for dealing with errors and interrupts encountered in
a low-level subroutine of a program.”

—Linux Documentation Project: setjmp(3)

These two tools circumvent normal control flow and allow programs to teleport them-
selves through the code. Occasionally an error occurs deep within a call stack. If our
program takes too long to respond to the error, the OS may simply abort the program,
and the program’s data may be left in an inconsistent state. To avoid this, you can use
longjmp to shift control directly to the error-handling code.

 To understand the significance of this, consider what happens in an ordinary pro-
gram’s call stack during several calls to a recursive function as produced by the code
in listing 12.13. Each call to dive() adds another place that control eventually returns
to. See the left-hand side of table 12.3. The longjmp system call, used by listing 12.17,
bypasses several layers of the call stack. Its effect on the call stack is visible on the right-
hand side of table 12.3.

Table 12.3 Comparing the intended output from listing 12.13 and listing 12.17

Listing 12.13 produces a symmetrical pattern.
Each level is caused by a nested call to dive(),
which is removed when the calls return.

Listing 12.17 produces a much different pattern.
After a few calls to dive(), control teleports back
to main() without returning the calls to dive().

#
##
###
####
#####
###
##
#

#
##
###
early return!
finishing!

This code is never reached,
and therefore, this string is
never printed.

409Shutting down from deeply nested call stacks
On the left side of table 12.3, the call stack grows one step as functions are called, then
shrinks by one as each function returns. On the right side, the code jumps directly
from the third call to the top to the call stack.

 The following listing depicts how the call stack operates by printing its progress as
the program executes. The code for this listing is in ch10/ch10-callstack/src/main.rs.

 1 fn print_depth(depth:usize) {
 2 for _ in 0..depth {
 3 print!("#");
 4 }
 5 println!("");
 6 }
 7
 8 fn dive(depth: usize, max_depth: usize) {
 9 print_depth(depth);
10 if depth >= max_depth {
11 return;
12
13 } else {
14 dive(depth+1, max_depth);
15 }
16 print_depth(depth);
17 }
18
19 fn main() {
20 dive(0, 5);
21 }

There’s a lot of work to do to make this happen. The Rust language itself doesn’t have
the tools to enable this control-flow trickery. It needs to access some provided by its
compiler’s toolchain. Compilers provide special functions known as intrinsics to appli-
cation programs. Using an intrinsic function with Rust takes some ceremony to set up,
but that operates as a standard function once the set-up is in place.

12.9.1 Introducing the sjlj project

The sjlj project demonstrates contorting the normal control flow of a function.
With the help of some assistance from the OS and the compiler, it’s actually possi-
ble to create a situation where a function can move to anywhere in the program.
Listing 12.17 uses that functionality to bypass several layers of the call stack, creating
the output from the right side of table 12.3. Figure 12.5 shows the control flow for the
sjlj project.

12.9.2 Setting up intrinsics in a program

Listing 12.17 uses two intrinsics, setjmp() and longjmp(). To enable these in our pro-
grams, the crate must be annotated with the attribute provided. The following listing
provides this documentation.

Listing 12.13 Illustrating how the call stack operates

410 CHAPTER 12 Signals, interrupts, and exceptions
#![feature(link_llvm_intrinsics)]

This raises two immediate questions. We’ll answer the following shortly:

 What is an intrinsic function?
 What is LLVM?

Additionally, we need to tell Rust about the functions that are being provided by
LLVM. Rust won’t know anything about them, apart from their type signatures, which
means that any use of these must occur within an unsafe block. The following listing
shows how to inform Rust about the LLVM functions. The source for this listing is in
ch12/ch12-sjlj/src/main.rs.

Listing 12.14 Crate-level attribute required in main.rs

main()

register_signal_handler()

dive()

unsafe { setjmp() }

println!("early return!")

println!("finishing")

ptr_to_jmp_buf()

handle_signals()

return_early()

unsafe { longjmp() }

These sections of the program
can only be reached by raising
the SIGUSR1 signal.

In our program, we do this manually
via , but in principle therelibc::signal()

is nothing to prevent an external
process from also raising this signal
at any stage.

setjmp() acts as both an entry point
and an exit point. After the call to
longjmp() setjmp(), returns a second time.

Figure 12.5 Control flow of the sjlj project. The program’s control flow can be intercepted via a
signal and then resumed from the point of setjmp().

411Shutting down from deeply nested call stacks
extern "C" {
 #[link_name = "llvm.eh.sjlj.setjmp"]
 pub fn setjmp(_: *mut i8) -> i32;

 #[link_name = "llvm.eh.sjlj.longjmp"]
 pub fn longjmp(_: *mut i8);
}

This small section of code contains a fair amount of complexity. For example

 extern "C" means “This block of code should obey C’s conventions rather than
Rust’s.”

 The link_name attribute tells the linker where to find the two functions that
we’re declaring.

 The eh in llvm.eh.sjlj.setjmp stands for exception handling, and the sjlj
stands for setjmp/longjmp.

 *mut i8 is a pointer to a signed byte. For those with C programming experi-
ence, you might recognize this as the pointer to the beginning of a string (e.g.,
a *char type).

WHAT IS AN INTRINSIC FUNCTION?
Intrinsic functions, generally referred to as intrinsics, are functions made available via
the compiler rather than as part of the language. Whereas Rust is largely target-agnostic,
the compiler has access to the target environment. This access can facilitate extra
functionality. For example, a compiler understands the characteristics of the CPU that
the to-be-compiled program will run on. The compiler can make that CPU’s instruc-
tions available to the program via intrinsics. Some examples of intrinsic functions
include

 Atomic operations—Many CPUs provide specialist instructions to optimize certain
workloads. For example, the CPU might guarantee that updating an integer is
an atomic operation. Atomic here is meant in the sense of being indivisible.
This can be extremely important when dealing with concurrent code.

 Exception handling—The facilities provided by CPUs for managing exceptions
differ. These facilities can be used by programming language designers to cre-
ate custom control flow. The setjmp and longjmp intrinsics, introduced later in
this chapter, fall into this camp.

WHAT IS LLVM?
From the point of view of Rust programmers, LLVM can be considered as a subcom-
ponent of rustc, the Rust compiler. LLVM is an external tool that’s bundled with rustc.
Rust programmers can draw from the tools it provides. One set of tools that LLVM
provides is intrinsic functions.

Listing 12.15 Declaring the LLVM intrinsic functions within listing 12.17

Provides specific instructions to the
linker about where it should look to
find the function definitions

As we’re not using the argument’s name, uses
an underscore (_) to make that explicit

412 CHAPTER 12 Signals, interrupts, and exceptions
 LLVM is itself a compiler. Its role is illustrated in figure 12.6.

LLVM translates code produced by rustc, which produces LLVM IR (intermediate
language) into machine-readable assembly language. To make matters more compli-
cated, another tool, called a linker, is required to stitch multiple crates together. On
Windows, Rust uses link.exe, a program provided by Microsoft as its linker. On other
operating systems, the GNU linker ld is used.

 Understanding more detail about LLVM implies learning more about rustc and
compilation in general. Like many things, getting closer to the truth requires explor-
ing through a fractal-like domain. Learning every subsystem seems to require learning
about another set of subsystems. Explaining more here would be a fascinating, but
ultimately distracting diversion.

12.9.3 Casting a pointer to another type

One of the more arcane parts of Rust’s syntax is how to cast between pointer types.
You’ll encounter this as you make your way through listing 12.17. But problems can
arise because of the type signatures of setjmp() and longjmp(). In this code snippet,
extracted from listing 12.17, you can see that both functions take a *mut i8 pointer as
an argument:

extern "C" {
 #[link_name = "llvm.eh.sjlj.setjmp"]
 pub fn setjmp(_: *mut i8) -> i32;

 #[link_name = "llvm.eh.sjlj.longjmp"]
 pub fn longjmp(_: *mut i8);
}

Text editor

Produces

rustccargo

Read
by

Invokes invokes llvm

O
ptim

ize
d

by

linker

Produces
Com

bin
ed

by Produces

External cratesTarget CPU

Produces

Inform
s

Com
bined by

rustc invokes

Informally referred
to as rustc

Environment

Tool

Source code LLVM IR Assembly Executable file

In the case of lib crates,
binary files that can be
linked to other crates later on

Artifact

Figure 12.6 Some of the major steps required to generate an executable from Rust source code. LLVM is an
essential part of the process but not one that is user-facing.

413Shutting down from deeply nested call stacks
Requiring a *mut i8 as an input argument is a problem because our Rust code only
has a reference to a jump buffer (e.g., &jmp_buf).2 The next few paragraphs work
through the process of resolving this conflict. The jmp_buf type is defined like this:

const JMP_BUF_WIDTH: usize =
 mem::size_of::<usize>() * 8;
type jmp_buf = [i8; JMP_BUF_WIDTH];

The jmp_buf type is a type alias for an array of i8 that is as wide as 8 usize integers.
The role of jmp_buf is to store the state of the program, such that the CPU’s registers
can be repopulated when needed. There is only one jmp_buf value within listing 12.17,
a global mutable static called RETURN_HERE, defined on line 14. The following exam-
ple shows how jmp_buf is initialized:

static mut RETURN_HERE: jmp_buf = [0; JMP_BUF_WIDTH];

How do we treat RETURN_HERE as a pointer? Within the Rust code, we refer to RETURN_
HERE as a reference (&RETURN_HERE). LLVM expects those bytes to be presented as a
*mut i8. To perform the conversion, we apply four steps, which are all packed into
a single line:

unsafe { &RETURN_HERE as *const i8 as *mut i8 }

Let’s explain what those four steps are:

1 Start with &RETURN_HERE, a read-only reference to a global static variable of type
[i8; 8] on 64-bit machines or [i8; 4] on 32-bit machines.

2 Convert that reference to a *const i8. Casting between pointer types is consid-
ered safe Rust, but deferencing that pointer requires an unsafe block.

3 Convert the *const i8 to a *mut i8. This declares the memory as mutable
(read/write).

4 Wrap the conversion in an unsafe block because it deals with accessing a global
variable.

Why not use something like &mut RETURN_HERE as *mut i8? The Rust compiler becomes
quite concerned about giving LLVM access to its data. The approach provided here,
starting with a read-only reference, puts Rust at ease.

12.9.4 Compiling the sjlj project

We’re now in a position where possible points of confusion about listing 12.17
should be minor. The following snippet again shows the behavior we’re attempting
to replicate:

2 jmp_buf is the conventional name for this buffer, which might be useful for any readers who want to dive
deeper themselves.

This constant is 64 bits wide (8 × 8
bytes) in 64-bit machines and 32 bits
wide (8 × 4 bytes) on 32-bit machines.

414 CHAPTER 12 Signals, interrupts, and exceptions
$ git clone https:/ /github.com/rust-in-action/code rust-in-action
$ cd rust-in-action/ch12/ch12-sjlj
$ cargo run -q
#
#
early return!
finishing!

One final note: to compile correctly, the sjlj project requires that rustc is on the
nightly channel. If you encounter the error “#![feature] may not be used on the stable
release channel,” use rustup install nightly to install it. You can then make use of
the nightly compiler by adding the +nightly argument to cargo. The following con-
sole output demonstrates encountering that error and recovering from it:

$ cargo run -q
error[E0554]: #![feature] may not be used on the stable release channel
 --> src/main.rs:1:1
 |
1 | #![feature(link_llvm_intrinsics)]
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

error: aborting due to previous error

For more information about this error, try `rustc --explain E0554`.

$ rustup toolchain install nightly
...

$ cargo +nightly run -q
#
##
###
early return!
finishing!

12.9.5 sjlj project source code

The following listing employs LLVM’s compiler to access the operating system’s long-
jmp facilities. longjmp allows programs to escape their stack frame and jump anywhere
within their address space. The code for listing 12.6 is in ch12/ch12-sjlj/Cargo.toml
and listing 12.17 is in ch12/ch12-sjlj/src/main.rs.

[package]
name = "sjlj"
version = "0.1.0"
authors = ["Tim McNamara <code@timmcnamara.co.nz>"]
edition = "2018"

[dependencies]
libc = "0.2"

Listing 12.16 Project metadata for sjlj

415Shutting down from deeply nested call stacks
 1 #![feature(link_llvm_intrinsics)]
 2 #![allow(non_camel_case_types)]
 3 #![cfg(not(windows))]
 4
 5 use libc::{
 6 SIGALRM, SIGHUP, SIGQUIT, SIGTERM, SIGUSR1,
 7 };
 8 use std::mem;
 9
 10 const JMP_BUF_WIDTH: usize =
 11 mem::size_of::<usize>() * 8;
 12 type jmp_buf = [i8; JMP_BUF_WIDTH];
 13
 14 static mut SHUT_DOWN: bool = false;
 15 static mut RETURN_HERE: jmp_buf = [0; JMP_BUF_WIDTH];
 16 const MOCK_SIGNAL_AT: usize = 3;
 17
 18 extern "C" {
 19 #[link_name = "llvm.eh.sjlj.setjmp"]
 20 pub fn setjmp(_: *mut i8) -> i32;
 21
 22 #[link_name = "llvm.eh.sjlj.longjmp"]
 23 pub fn longjmp(_: *mut i8);
 24 }
 25
 26 #[inline]
 27 fn ptr_to_jmp_buf() -> *mut i8 {
 28 unsafe { &RETURN_HERE as *const i8 as *mut i8 }
 29 }
 30
 31 #[inline]
 32 fn return_early() {
 33 let franken_pointer = ptr_to_jmp_buf();
 34 unsafe { longjmp(franken_pointer) };
 35 }
 36
 37 fn register_signal_handler() {
 38 unsafe {
 39 libc::signal(SIGUSR1, handle_signals as usize);
 40 }
 41 }
 42
 43 #[allow(dead_code)]
 44 fn handle_signals(sig: i32) {
 45 register_signal_handler();
 46
 47 let should_shut_down = match sig {
 48 SIGHUP => false,
 49 SIGALRM => false,
 50 SIGTERM => true,
 51 SIGQUIT => true,
 52 SIGUSR1 => true,

Listing 12.17 Using LLVM’s internal compiler machinery (intrinsics)

Only compile
on supported
platforms.

When true, the
program exits.

Allows a recursion
depth of 3

An #[inline] attribute
marks the function as being
available for inlining, which
is a compiler optimization
technique for eliminating the
cost of function calls.

This is unsafe because Rust cannot
guarantee what LLVM does with
the memory at RETURN_HERE.

Asks libc
to associate
handle_signals
with the SIGUSR1
signal

416 CHAPTER 12 Signals, interrupts, and exceptions
 53 _ => false,
 54 };
 55
 56 unsafe {
 57 SHUT_DOWN = should_shut_down;
 58 }
 59
 60 return_early();
 61 }
 62
 63 fn print_depth(depth: usize) {
 64 for _ in 0..depth {
 65 print!("#");
 66 }
 67 println!();
 68 }
 69
 70 fn dive(depth: usize, max_depth: usize) {
 71 unsafe {
 72 if SHUT_DOWN {
 73 println!("!");
 74 return;
 75 }
 76 }
 77 print_depth(depth);
 78
 79 if depth >= max_depth {
 80 return;
 81 } else if depth == MOCK_SIGNAL_AT {
 82 unsafe {
 83 libc::raise(SIGUSR1);
 84 }
 85 } else {
 86 dive(depth + 1, max_depth);
 87 }
 88 print_depth(depth);
 89 }
 90
 91 fn main() {
 92 const JUMP_SET: i32 = 0;
 93
 94 register_signal_handler();
 95
 96 let return_point = ptr_to_jmp_buf();
 97 let rc = unsafe { setjmp(return_point) };
 98 if rc == JUMP_SET {
 99 dive(0, 10);
100 } else {
101 println!("early return!");
102 }
103
104 println!("finishing!")
105 }

417Summary
12.10 A note on applying these techniques
to platforms without signals
Signals are a “UNIX-ism.” On other platforms, messages from the OS are handled dif-
ferently. On MS Windows, for example, command-line applications need to provide a
handler function to the kernel via SetConsoleCtrlHandler. That handler function is
then invoked when a signal is sent to the application.

 Regardless of the specific mechanism, the high-level approach demonstrated in
this chapter should be fairly portable. Here is the pattern:

 Your CPU generates interrupts that require the OS to respond.
 Operating systems often delegate responsibility for handling interrupts via

some sort of callback system.
 A callback system means creating a function pointer.

12.11 Revising exceptions
At the start of the chapter, we discussed the distinction between signals, interrupts, and
exceptions. There was little coverage of exceptions, directly. We have treated these as a
special class of interrupts. Interrupts themselves have been modeled as signals.

 To wrap up this chapter (and the book), we explored some of the features avail-
able in rustc and LLVM. The bulk of this chapter utilized these features to work with
signals. Within Linux, signals are the main mechanism that the OS uses to communi-
cate with applications. On the Rust side, we have spent lots of time interacting with
libc and unsafe blocks, unpacking function pointers, and tweaking global variables.

Summary
 Hardware devices, such as the computer’s network card, notify applications

about data that is ready to be processed by sending an interrupt to the CPU.
 Function pointers are pointers that point to executable code rather than to

data. These are denoted in Rust by the fn keyword.
 Unix operating systems manage job control with two signals: SIGSTOP and SIGCONT.
 Signal handlers do the least amount of work possible to mitigate the risk of trigger-

ing race conditions caused when multiple signal handlers operate concurrently. A
typical pattern is to set a flag with a global variable. That flag is periodically
checked within the program’s main loop.

 To create a global variable in Rust, create a “mutable static.” Accessing mutable
statics requires an unsafe block.

 The OS, signals, and the compiler can be utilized to implement exception han-
dling in programming languages via the setjmp and longjmp syscalls.

 Without the unsafe keyword, Rust programs would not be able to interface
effectively with the OS and other third-party components.

index
Symbols

! type 79–90
? operator 275
'static lifetime 62
() type 79–90
*const fn() -> () type 406
*const i8 413
*const T 183
*mut i32 183
*mut i8 411–413
*mut T 183
*mut u32 376
*mut u8 376
&'static str 189
&dyn Rng 259
&dyn Trait 256
&mut dyn Trait 256
&mut T 119
&Rng 260
&str type 61, 189, 222, 242, 292,

387
&T 119
&Trait 256
&[u8] 292, 387
#![allow(unused_variables)]

attribute 78
#![core_intrinsics] attribute 373
#![no_main] attribute 374
#![no_mangle] attribute 373,

389
#![no_std] attribute 373–374,

389
#![repr(u8]) 389
#[cfg(all(...))] 227
#[cfg(any(...))] 227

#[cfg(not(...))] 227
#[cfg(target_os ! 227
#[derive(…)] block 152
#[derive(Debug)] 98, 272–273

A

abort() function 373
abort exception 391
absolute time 296
abstract classes 40
ActionKV 228, 231
actionkv

conditional compilation
226–228

front-end code 224–228
full code listing 237–241
libactionkv crate 228–249
overview 222–223

ActionKV::load(). open() 228
ActionKV::open() 228–229
activation frames 188
address space 177
add_with_lifetimes() 57
akv_mem executable 223
aliasing 91
alloc::raw_vec::RawVec type 187
alloc() 194, 201
allocation records 188
allocator 194
alloc module 187
always on mode 314
Amazon Web Services (AWS) 2
anonymous functions 9, 199,

329–330
application-level protocol 254

Arc 354
Arc<Mutex<_>> 363
Arc<Mutex<T>> 133, 354
Arc<T> 133, 185
arena::Arena 201
arena::TypedArena 201
arrays, making lists with 64–65
Artist struct 344–345
as keyword 39
asm! macro 395
AsMut<T> 189
as operator 39
AsRef<str> 189
AsRef<T> 189
associative arrays 242
asynchronous interrupts 392
asynchronous programming 362
atomic operations 411
atomic reference counter 133
avatar generator 341–360

render-hex 342–349
generating SVGs 346
input parsing 344
interpreting

instructions 344–346
running 342
source code 346–349

spawning a thread per logical
task 351–353

functional programming
style 351–352

parallel iterators 352–353
thread pools 353–360

channels 356
implementing task

queues 358–360
419

INDEX420
avatar generator (continued)
one-way communication

354–356
two-way communication

356–358
AWS (Amazon Web Services) 2

B

back pressure 354
base 2 (binary) notation 37–38
base 8 (octal) notation 37–38
base 16 (hexadecimal)

notation 37–38
b as i32 type cast 39
basic_hash 243
big endian format 143
BigEndian type 232
[[bin]] entry 247
bincode format 214–216
bin section 223
bit endianness 143
bit numbering 143
bit patterns and types 137–139
bool 87
boot image 367
bootimage crate 366–367
bootloader 377
borrow checker 107
borrowed type 62
bounded queues 354
bounds checking 47
Box::new(T) 192
Box<dyn Error> 271–272
Box<dynstd::error::Error>

type 255
Box<dyn Trait> 256
Box<T> 187, 191
Box<Trait> 256
break keyword 50, 80

breaking from nested
loops 49

overview 48–49
BTreeMap

deciding between 245–246
keys and values 241–243
retrieving values from

244–245
buffered I/O 73
buffer overflow 13
buffers 21
BufReader. BufReader 72
bug 22
build-command 371
byteorder::LittleEndian 232

byteorder::ReadBytesExt
trait 232

byteorder::WriteBytesExt
trait 232

byteorder crate 232
ByteString type 228
ByteStr type 228

C

cache-friendly data
structures 19

capitals 244
capitals["Tonga"] 245
capitals.index("Tonga") 245
captures 330
cargo add command 45
cargo-binutils crate 366–367
cargo bootimage command 374
cargo build command 371
cargo build --release flag 192
cargo build utility 18, 192
cargo commands 11
cargo doc --no-deps flag 106
cargo doc utility 18
cargo-edit crate 45
cargo init command 34
cargo new command 6, 18
cargo run command 6, 8, 10, 18,

34, 44, 54, 90, 265
cargo test 154
cargo tool

compiling projects with 33–34
creating projects with 6, 18
rendering docs with 104–106
testing projects with 154

cargo xbuild 371
carry flag 165
c_char type 182
Cell<T> 185
cfg annotation 326
cfg attribute 226, 250
--cfg ATTRIBUTE command-line

argument 227
ch6-particles 200
char type 62
check_status() function 109,

111–112, 115–116
check_status(sat_a) 112
checksums, validating I/O

errors with 234–236
CHIP-8 specification 165
choose() method 257
chrono::Local 299
chunks() option 219

clap::App type 301
clap::Arg type 301
class keyword 84
clear intent 221
Clock::set(t) 313
clock command 302
Clock struct 300, 306
clock synchronization 314
.clone() method 129–130, 153
Clone trait 129–131, 153
close() method 87
closures 9

functions vs. 340–341
overview 330–331

collect() method 351–352
collection 47
Color type 382
Command::Noop 360
command-line arguments,

supporting 70–72
command-line utilities 23–24
Common control flow

mechanisms 8
compilers 33
compiler target 226, 369
compile time 11
compiling 10
complex numbers 43–45
compound data types

adding methods to struct with
impl 84–87

enum
defining 95–96
using to manage internal

state 96–98
inline documentation 103–106

rendering docs for crates
and dependencies
104–106

rendering docs for single
source file 104

modeling files with struct
80–83

plain functions 78–80
protecting private data 102
returning errors 87–94

modifying known global
variables 87–91

Result return type 92–94
simplifying object

creation 84–87
traits 98–102

creating Read traits 98–99
implementing

std::fmt::Display 99–102

INDEX 421
computer architecture 206
concurrency 328

anonymous functions 329–330
avatar generator 341–360

render-hex 342–349
spawning a thread per logi-

cal task 351–353
thread pools 353–360

closures vs. functions 340–341
task virtualization and 360–363

containers 363
context switches 362
processes 363
reasons for using operating

systems 363
threads 362
WebAssembly 363

threads 330–340
closures 330–331
effect of spawning many

threads 333
effect of spawning some

threads 331–332
reproducing results

335–338
shared variables 338–340
spawning threads 331
thread::yield_now()

method 338
conditional branching 49–51
conditional compilation 9, 226
constellation 108
const keyword 88, 91
const USAGE 226
const values 381, 405
containers 363
container variable 45
context switches 362
contiguous layout 194
continue keyword 8, 47
convert() function 345–346
copy semantics 113, 153
Copy trait 111–112, 114, 129–

131, 153
core::fmt::Write trait 385–386

implementing 386–387
reimplementing panic()

385–386
core::intrinsics::abort() 385
core::ptr::Shared type 187
core::ptr::Unique,

core::ptr::Shared type 185
core::ptr::Unique type 187
core::write! macro 385
core module 187

coroutines 361
CPU emulation 158–173

CPU 4 173
CPU RIA/1 (Adder) 159–163

defining CPU 159
emulator's main loop

160–161
full code listing 163–164
interpreting opcodes

161–163
loading values into

registers 159–160
terminology 159

CPU RIA/2 (Multiplier)
164–167

expanding CPU to support
memory 164–165

full code listing 166–167
handling integer

overflow 165
reading opcodes from

memory 165
CPU RIA/3 (Caller) 167–173

defining functions and
loading into
memory 168–169

expanding CPU to include
stack support 167–168

full code listing 170–173
implementing CALL and

RETURN opcodes
169–170

cpu.position_in_memory
variable 170

cpu.run() 170
CPU struct 164
CRC32 (cyclic redundancy

check returning 32
bits) 235

create() method 219
cryptographic hash

function 235
CubeSat 108, 111, 115, 119–120
CubeSat. CubeSat.mailbox 118
CubeSat.messages vector 120
current_instruction field 164
Cursor.print() 383
Cursor struct 382–383

D

dangling pointers 12
data

bit patterns and types 137–139
CPU emulation 158–173

CPU 4 173
CPU RIA/1 (Adder) 159–

163
CPU RIA/2

(Multiplier) 164–167
CPU RIA/3 (Caller)

167–173
fixed-point number

formats 152–157
floating-point numbers

144–152
dissecting 150–152
inner workings of f32

type 144–145
isolating exponent 146–147
isolating mantissa 148–150
isolating sign bit 146
representing decimals

143–144
generating random probabili-

ties from random
bytes 157–158

integers
endianness 142–143
integer overflow 139–143

data-oriented programming 19
data processing 24
data races 13
DateTime<FixedOffset> 306
debug_assertions attribute 228
debugging 221
Debug trait 99, 153, 272–273
declaration statements 51
decode_f32_parts() 150
deconstruct_f32() 150
DELETE case 95
delete <key> 224
[dependencies] section 44,

353
dereference operator 53, 192
dereferencing a pointer 183
deserialization 249
Deserialize trait 214
desktop applications 25
Display trait 99–102, 272–274
dive() 408
dns.rs 283
domain_name 264
domain name resolution 261
Drop 115, 132
drop(&mut self) 115
Dwarf struct 257
dynamically-sized types 65, 190,

256
dynamic dispatch 256

INDEX422
dynamic memory allocation
194

defined 194–199
impact of 199–201

dynamic typing 65
dyn keyword 260

E

Elf struct 257
else blocks 49–51
enchant() method 257, 259
encoding 138
endianness 137, 142–143
entry point 377
enumerate() method 63
enums 51, 77, 84, 109

annotating with
#[derive(Debug)] 273

controlling in-memory repre-
sentation of 382

defining 95–98
defining enums that include

upstream errors as
variants 273

reasons for using 382
using to manage internal

state 96–98
EOF (end of file) 230
epochs 296
eprintln! 10
Eq trait 152–153
Err 219
Err(E) 10
Err(err) 270
Err(String) 92
errno 87, 91
error handling 268–277

clock project 313
inability to return multiple

error types 269–271
returning errors 87–94

modifying known global
variables 87–91

Result return type 92–94
unwrap() and expect() 277
wrapping downstream

errors 272–276
annotating with

#[derive(Debug)]
273

defining enums that
include the upstream
errors as variants 273

map_err() 274–276

std::convert::From trait
276

std::error::Error trait 274
std::fmt::Display trait

273–274
Error trait 274
ethernet.rs 283
exceptions 391

defined 391–393
handling 379–380, 411
revising 417

executable 361
_exit() function 377
.expect() method 219, 228, 264,

277, 292
exponents, isolating 146–147
expression statement 51
extending applications 24
extern "C" 374, 411

F

f1_length 81
f1_name 81
f32::EPSILON 42
f32_from_parts() method

150
f32—i32 139
f32 type 38, 41, 144, 150,

154–155, 232
f4 variable 92
f64::EPSILON 42
f64 type 38, 41, 155
fast clocks 297
faults 391–392
fearless concurrency 27
fields variable 10
File::create method 220
File::open method 220, 271
<file> command 33
file descriptor 87
File object 84
files and storage

actionkv
conditional

compilation 226–228
front-end code 224–228
libactionkv crate 228–249
overview 222–223

file formats
creating 214–216
defined 213–214
writing data to disk with

serde and bincode
format 214–216

file operations 219–222
opening files and controlling

file mode 219–220
std::fs::Path trait 220–222

hexdump clones 217–219
key-value stores 222–223

actionkv 222–223
key-value model 222

FileState subtype 100
File struct 81
FILETIME 308
File type 81, 96, 100
fixed-point number

formats 152–157
FledgeOS 365–368

compilation instructions 370
development environment

setting up 366–367
verifying 367–368

exception handling 379–380
first boot 368–369
loops 377–379
panic handling 374–375,

385–387
core::fmt::Write trait

385–387
reporting error to user 385

source code 370–374, 378–
380, 383, 387

_start() function 377
text output 381–383

creating type that can print
to VGA frame
buffer 382–383

enums 382
printing to screen 383
writing colored text to

screen 381
writing to screen with VGA-

compatible text
mode 375–377

floating-point numbers 36–37,
144–152

dissecting 150–152
inner workings of f32

type 144–145
isolating exponent 146–147
isolating mantissa 148–150
isolating sign bit 146
representing decimals 143–144

flow control 45–52
break keyword

breaking from nested
loops 49

overview 48–49

INDEX 423
flow control (continued)
continue keyword 47
else blocks 49–51
for loop

anonymous loops 46
index variable 46–47
overview 45–46

if else blocks 49–51
if keyword 49–51
loop keyword 48
match keyword 51–52
while loop

endless looping 48
overview 47
stopping iteration once a

duration is reached
47–48

fmt::Result 100
.fmt() method 100
fn keyword 35, 404–405, 417
fn noop() 406
fn x(a: String) type

signature 189
fn x<T: AsRef<str>> (a: T) type

signature 189
for item in collection 47
for loop

anonymous loops 46
index variable 46–47
overview 45–46

format! macro 99
frame buffer 374, 376
frames 279
f.read(buffer) function 84
f.read_exact() method 219
free() 194, 201
freestanding applications 363
from() method 220, 276, 318
From<f64> implementation 154
From trait 154, 276, 318–319
function pointers 341, 405–406
functions 56–60

anonymous functions 329–330
calling 35–36
closures vs. 340–341
defining 52
explicit lifetime

annotations 56–58
generic functions 58–60
intrinsic functions

defined 411
setting up 409–412

using plain functions to exper-
iment with APIs 78–80

fview 217–218

G

GC (garbage collection) 131
generate_svg() 346
generic functions 58–60
generic type 58
.get() method 245
git clone --depth 90
global variables

signal handling with custom
actions 401–402

using to indicate that shut-
down has been
initiated 402–405

goto fail 22
goto fail; bug 22–23
goto keyword 49
grep-lite 60–63
grep-lite --help 72
ground station, definition 108
GroundStation type 119–120,

123

H

handlers 338
handlers.pop() 336
handlers vector 336
handle_signals() function 402
handle_sigterm() 404
handle_sigterm as usize 405
handle_sigusr1() 404
hardware interrupts 391, 395
hash collision 243
hashes 241
HashMap

creating and populating with
values 243–244

deciding between 245–246
keys and values 241–243
retrieving values from

244–245
hash map 242
hash table 241–242
haystack 53
heading 344
heap 18, 190–192
HeapAlloc() call 194
HeapFree() 194
Heartbleed 21–22
“Hello, world!” 5–8
hexdump clones 217–219
high accuracy 297
high byte 161
higher-order programming 9

high nibble 161
high resolution 297
hlt x86 instruction 378
hostnames, converting to IP

addresses 261–268
HTTP

HTTP GET requests, generat-
ing with reqwest
library 254–256

raw 283–292
http-equiv attribute 254
http.rs file 283

I

i16 type 38, 232
i32 type 38, 183
i64 type 38
i8 type 38
if else blocks 49–51
if keyword 49–51
if let construct 10
if let Ok(T) 10
impl blocks 78, 84, 130, 274,

276
adding methods to struct

with 84–87
simplifying object creation by

implementing 84–87
impl keyword 98
INDEX_KEY value 247
Index trait 245
infix notation 36
inline assembly 379
inline documentation 103–106

rendering docs for crates and
dependencies 104–106

rendering docs for single
source file 104

insert <key> <value> 224
integers

base 2, base 8, and base 16
notation 37–38

endianness 142–143
integer overflow 139–143
overview 36–37

interior mutability 132–133,
185

interrupts
defined 391–393
effect on applications

393–395
hardware interrupts 395
signals vs. 391–393
software interrupts 395

INDEX424
.into() method 318
intrinsic functions 373

defined 411
setting up 409–412

intrinsics::abort() 375, 389
IP addresses, converting host-

names to 261–268
ip tuntap list subcommand

283
.is_finite() method 43
isize type 38
.is_nan() method 43
ISO 8601 standard 299–305
is_strong 189
.iter() method 245
iterator invalidation 13
.iter_mut() variant 245
it object 257

J

jmp_buf type 413
join() function 331, 336

K

kernel 365–368
compilation instructions 370
development environment

setting up 366–367
verifying 367–368

exception handling 379–380
first boot 368–369
loops 377–379
panic handling 374–375,

385–387
core::fmt::Write trait

385–387
reporting error to user

385
source code 378–380, 383,

387
source code listings 370–374
_start() function 377
text output 381–383

creating type that can print
to VGA frame
buffer 382–383

enums 382
printing to screen 383
writing colored text to

screen 381
writing to screen with VGA-

compatible text
mode 375–377

.keys() method 245

.keys_mut() variant 245
key-value stores 222–223

actionkv 222–223
key-value model 222

kill command 398–399

L

lambda functions 9, 199, 329
language items 380
Last In, First Out (LIFO) 188
let keyword 91
letters variable 16
lexical scopes 35
libactionkv::ActionKV 228
libactionkv crate 228–249

adding database index to
actionkv 246–249

BTreeMap
deciding between 245–246
keys and values 241–243
retrieving values from

244–245
HashMap

creating and populating
with values 243–244

deciding between 245–246
keys and values 241–243
retrieving values from

244–245
initializing ActionKV

struct 228–230
inserting new key-value pairs

into existing
database 236–237

processing individual
records 230–232

validating I/O errors with
checksums 234–236

writing multi-byte binary data
to disk in a guaranteed
byte order 232–233

libc::SIG_IGN 407
libc::signal() 404, 407
libc::timeval 308
libc library

non-Windows clock
code 307–308

setting the time 306–308
type naming

conventions 306–307
lifetime 110–112
lifetime elision 57
LIFO (Last In, First Out) 188

linear memory 363
link_name attribute 411
lists 63–67

arrays 64–65
slices 65
vectors 66–67

little endian format 143
LLVM 411–412
llvm.eh.sjlj.setjmp 411
llvm-tools-preview

component 367
llvm-tools-preview toolchain

component 368
load() 236
long int 298
longjmp 408–409, 412, 414,

417
loop keyword 48, 80, 281
loops

break keyword
breaking from nested

loops 49
overview 48–49

continue keyword 47
FledgeOS 377–379

interacting with CPU
directly 377–378

source code 378–379
for loop

anonymous loops 46
index variable 46–47
overview 45–46

loop keyword 48
while loop

endless looping 48
overview 47
stopping iteration once a

duration is reached
47–48

low byte 161
low-level programming 2
low nibble 161

M

MAC addresses 277–281
macros 36
main.rs file 283
Mandelbrot set 54–56
mantissa 144, 148–150
map() method 351–352
map_err() method 272,

274–276
match keyword 51–52, 281
mem::transmute 157

INDEX 425
memory
pointers 178–187

overview 176–178
pointer ecosystem 185–186
raw pointers 183–185
smart pointer building

blocks 186–187
providing programs

with 187–201
dynamic memory

allocation 194–201
heap 190–192
stack 188–190

virtual memory 202–211
having processes scan their

own memory 203–205
overview 202–203
reading from and writing to

process memory 211
scanning address

spaces 208–210
translating virtual addresses

to physical
addresses 205–207

memory fragmentation 206
memory management unit

(MMU) 203, 206
message ID 263
messages.push() 120
Message struct 263
MessageType 264
message type 263
<meta> HTML tag 254
mkdir <project> 34
MMU (memory management

unit) 203, 206
mobile applications 25
mock CubeSat ground station

lifetime issue 110–112
special behavior of primitive

types 112–114
mock_rand() 158
mod keyword 156
most significant bit 143
most significant byte 143
move keyword 330, 340
move semantics 113, 153
multicast mode 279
Mutex 354

N

NaiveTime 298
name mangling 373
namespaces 363

NAN (Not a Number)
values 148

NativeEndian type 232
n_bits 149
networking

error handling 268–277
inability to return multiple

error types 269–271
unwrap() and expect() 277
wrapping downstream

errors 272–276
generating HTTP GET

requests with
reqwest 254–256

implementing state machines
with enums 281–282

MAC addresses 277–281
overview 252–254
raw HTTP 283–292
TCP 260–268

converting hostnames to IP
addresses 261–268

port numbers 261
raw 282

trait objects 256–260
defined 256
function of 256
rpg project 257–260

virtual networking
devices 282–283

Network Time Protocol. See NTP
(Network Time Protocol)

Never type 79
new() method 44–45, 84–87
newtype pattern 81
nibbles 161
nightly toolchain 367
nnn variable 161
non-blocking I/O 362
None variant 177
nonlocal control transfer 408
noop() function 406
No Rust 2.0 27
Not a Number (NAN)

values 148
Notify opcodes 264
nth() method 219
NTP (Network Time

Protocol) 293, 314–321
adjusting local time

316–318
converting between time rep-

resentations that use dif-
ferent precisions and
epochs 318–319

full code listing 319–321
sending requests and inter-

preting responses
314–316

NTPResult 316
null pointer 177
num::complex::Complex

type 44
numbers 36–45

comparing
different types 39–43
operators for 38–43

complex numbers 43–45
decimal (floating-point)

numbers 36–37
integers

base 2, base 8, and base 16
notation 37–38

overview 36–37
rational numbers 43–45

O

offset() method 376–377, 389
Ok state 92
one_at_bit_i 149
OpCode enum 264
opcodes

implementing CALL and
RETURN opcodes
169–170

interpreting 161–163
reading from memory 165

open() method 87, 92, 219
--open cargo doc 105
Operation enum 344
operator overloading 36
Option<&V> 245
Option<T> type 177
Option type 52, 250, 263
-O rustc 141
ownership 115

mock CubeSat ground
station 108–114

lifetime issue 110–112
special behavior of primi-

tive types 112–114
overview 115
resolving issues with 118–133

duplicating values 128–131
using fewer long-lived

values 123–126
using references where full

ownership is not
required 119–122

INDEX426
ownership (continued)
wrapping data within spe-

cialty types 131–133
shifting 115–117

P

[package.metadata.bootimage]
371

page fault 202
pages, memory 202, 206
page table 202
.panic() method 385–386
panic handling 385–387

core::fmt::Write trait
implementing 386–387
reimplementing

panic() 385–386
reporting error to user 385

PanicInfo struct 375
parallelism 328
parallel iterators 352–353
.par_bytes() method 353
.par_iter() method 351, 353
parity_bit() function 235
parity bit checking 235–236
parity checking 235
parse::<f32>() annotation 10
parse::<Ipv6Addr>() 271
parse() function 10, 351, 358
.parse() method 10, 345
PartialEq trait 99, 152–153
partial equivalence relation 41
Particle struct 195
password argument 189
password variable 190
<path> tag 346
PathBuf value 220
Path trait 220–222
Path value 220–221
pause variable 338
PIC (Programmable Interrupt

Controller) 395
PID (process ID) 398
pointers 178–187

function pointers 405–406
overview 176–178
pointer ecosystem 185–186
raw pointers 183–185
smart pointer building

blocks 186–187
Pointers type 178
polymorphism 256
pop() 336
portability 221

port numbers 261
position_in_memory 164–165,

167, 173
predicates 47
prelude 353
primitive types, special behavior

of 112–114
print() method 386
println! 10, 36–37, 98–99, 139,

153, 250
processes 361, 363
process ID (PID) 398
process_record() function 231
process_vm_readv() 211
process_vm_writev() 211
program counter 165
Programmable Interrupt Con-

troller (PIC) 395
programs 361
promotion 39
pub(crate) 157
pub(in path) 157
pub(self) 157
pub(super) 157
pub keyword 157
push() method 360

Q

Q7 154
-q cargo 11
QEMU 366–367
Q format 152
quantizing the model 152
queries 263
Query opcodes 264
Query struct 263

R

radix 144
rand::random() 401
rand::rngs::ThreadRng

struct 259
rand::Rng trait 259
rand::seq::SliceRandom

trait 257
random bytes, generating ran-

dom probabilities
from 157–158

rational numbers 43–45
raw pointers 183–185
Raw pointers type 178
Rc::new() 131
Rc<RefCell<T>> 132–133, 185

Rc<T> 131–133, 185
Rc<T>. Rc<T> 131
RDTSC instruction 296
read(f, buffer) method 84
read function 78
.read_opcode() method 165
ReadProcessMemory() 211
Read trait 98–99, 219
real memory 202
real-time clock 294, 296
Receiver 354
Receiver<i32> 356
Receiver<T> 356
.recv() method 120, 354
recv(rx) -> 356
recv_from() 268
refactoring 128
RefCell<T> 185
reference counting 18, 91, 131
reference operator 53
references 53–54, 119–122
References type 178
registers 164
register_signal_handler()

function 403
register_signal_handlers()

function 402
regular expressions, adding sup-

port for 68–69
release build 11
--release cargo 11, 192
.remove() method 245
render-hex

running 342
single-threaded 342–349

generating SVGs 346
input parsing 344
interpreting

instructions 344–346
source code 346–349

repeat expression 64
report() function 79
ReportingAllocator struct 195
repr attribute 382
request::get(url) method 292
request/response mode 314
reqwest::get() 255
reqwest library, generating

HTTP GET requests
with 254–256

resource-constrained
environments 24–25

resource record type 263
response 314
response.text() method 255

INDEX 427
response variable 255
Result 35, 40, 94, 228, 255, 272
Result<File, String> function 92
Result return type 92–94
Result<T, E> 269
Result type 268, 313
ret() method 170
RETURN_HERE mutable

static 413
return keyword 9, 50
RETURN opcode 167, 169–170
RFC 3339 301
Rng trait 259
RPC 2822 301
rpg (role playing game)

project 257–260
run() method 160
run_command 371
Rust

"Hello, world!" 5–8
advocating for at work 3–4
command-line arguments

70–72
compiling source code into

running programs 33–34
compiling projects with

cargo 33–34
compiling single files with

rustc 33
deployments 23–26

command-line utilities
23–24

data processing 24
desktop applications 25
extending applications 24
mobile applications 25
resource-constrained

environments 24–25
server-side applications 25
systems programming 26
web browsers 26

downloading source code 8
downsides of 20–21

compile times 20–21
cyclic data structures 20
hype 21
size of language 21
strictness 21

features of 11–12, 19–20
community 26
concurrency 20
memory efficiency 20
performance 19–20

flow control 45–52
break keyword 48–49

conditional branching
49–51

continue keyword 47
for loop 45–47
loop keyword 48
match keyword 51–52
while loop 47–48

functions 52, 56–60
explicit lifetime

annotations 56–58
generic functions 58–60

goals of
control 18–19
productivity 16–18
safety 12–16

grep-lite 60–63
lists 63–67

arrays 64–65
slices 65
vectors 66–67

Mandelbrot set 54–56
numbers 36–45

base 2, base 8, and base 16
notation 37–38

comparing 38–43
complex numbers 43–45
floating-point numbers

36–37
integers 36–38
rational 43–45

reading
from files 72–75
from stdin 74

references 53–54
syntax

defining variables and
calling functions
35–36

overview 34–36
technology leaders and start-

ups that use 2–3
terminology 26–27
text processing 8–11
third-party code 67–70

adding support for regular
expressions 68–69

generating the third-party
crate documentation
locally 69–70

managing toolchains with
rustup 70

TLS security case studies
21–23

goto fail 22–23
Heartbleed 21–22

rustc 33, 141, 412
rustc --codegen opt-level 192
rustc compiler, compiling single

files with 33
rustc <file> command 33
rustdoc tool, rendering docs

for single source file
104

rust-src component 367
rust-strip 367
rustup default stable

command 367
rustup doc 70
rustup install nightly 414
rustup target list 369
rustup tool, managing tool-

chains with 70

S

-s argument to resolve 262
sat_id 111
save scum 362
segmentation fault 203–204
segments 203
select! macro 356
self.messages collection 126
semantic versioning 27
send() method 120, 354
Sender 354
Sender<i32> 356
Sender<T> 356
serde crate 214–216
serialization 249
Serialize trait 214
server-side applications 25
set() type 300
SetConsoleCtrlHandler handler

function 417
set_extension() method 221
setjmp 408–409, 412, 417
setjmp/longjmp 411
SetSystemTime() 313
settimeofday function 306–308,

313
shared ownership 185
shared variables 338–340
SHUT_DOWN value 401
SIGCONT signal 397, 399–400,

417
SIG_DFL 407
SIGHUP signal 399
SIGINT signal 396, 399
SIGKILL signal 396, 398, 400,

407

INDEX428
signals 407–408
application-defined

signals 405–406
applying techniques to plat-

forms without signals 417
defined 391–393
handling 395–400

default behavior 395–396
listing all signals supported

by OS 399–400
suspending and resuming

program
operation 397–399

with custom actions 400–405
interrupts vs. 391–393
sjlj project 409

casting pointers to another
type 412–413

compiling 413–414
setting up intrinsics 409–412
source code 414–415

sign bit, isolating 146
significand 144
signs 144
SIGQUIT signal 400
SIGSTOP signal 397–398, 400,

407, 417
SIGTERM signal 396, 399
SIGTSTP signal 400
SIGUSR1 405
SIGUSR2 405
Sized 188
sjlj project 409

casting pointers to another
type 412–413

compiling 413–414
setting up intrinsics 409–412
source code 414–415

slices, making lists with 65
smart pointers 185–187
software interrupts 391, 395
Some(T) variant 177
specialty types, wrapping data

within 131–133
spin_loop_hint()

instruction 338
src/main.rs 54
SSLVerifySignedServerKey-

Exchange function 22
stack 18

defined 188–190
expanding CPU emulation to

include stack
support 167–168

stack frames 188

_start() function 374, 377, 383
static binaries 24
static dispatch 256
static keyword 401
static memory 62
static methods 44, 84
static mut 88, 401
static values 405
static variable 405
StatusMessage 112
Status opcodes 264
std::arc::Weak type 187
std::cell::RefCell type 187
std::cell::UnsafeCell type 187
std::clone::Clone 128–129
std::cmp::Eq 41
std::cmp::PartialEq 38
std::cmp::PartialOrd 38
std::collections::BTreeMap 246
std::collections::HashMap 224,

246
std::convert::From 153, 174,

270, 272, 276, 318
std::convert::TryFrom 154, 174
std::convert::TryInto 40
std::env::args 219, 301
std::error::Error 274
std::error:Error 255, 292
std::ffi::OsStr 221
std::ffi::OSString 62
std::ffi::OsString 221
std::fmt::Binary 139
std::fmt::Debug 139
std::fmt::Display 99–102, 139,

273–274
std::fs::File type 219
std::fs::OpenOptions 220
std::fs::Path 220–222
std::fs::PathBuf 221
std::io::Error 271–272
std::io::Error::last_os_error() 313
std::io::ErrorKind::Unexpect-

edEof type 230
std::io::File 232
std::io::prelude 217
std::io::Read 217, 232
std::io::Write 232
std::io trait 217
std::iter::Iterator 353, 364
std::marker::Copy 129
std::marker::Copy. Copy 128
std::mem::drop 192
std::mem::transmute()

function 139
std::net::AddrParseError 271

std::net::TcpStream 260
std::ops::Add 59
std::ops::Fn 341, 364
std::ops::FnMut 341
std::ops::FnOnce 340
std::os:raw module 182
std::path::Path 62, 220
std::path::PathBuf 220
std::path::PathBuf type 250
std::path::Path string 221
std::path::Path type 250
std::prelude module 40
std::rc::Rc<T> 129
std::rc::Weak type 185, 187
std::String string 221
std::sync::Arc 354
std::sync::atomic::spin_loop

_hint() 338
std::sync::mpsc module 354
std::sync::Mutex 354
std::thread::spawn() 330
std::thread::yield_now() 338
std:rc::Rc. std:rc::Rc wrapper

type 131
std:rc::Rc type 91
std:sync::Arc type 91
stdin, reading from 74
steady clock 297
steps variable 352
String 61, 81–82, 118, 183, 189–

190, 215, 255
String::from() 81
struct blocks 84
structs

adding methods to with
impl 84–87

modeling files with 80–83
simplifying object creation

by implementing new()
84–87

str value 61, 229
suseconds_t 307
SVGs, generating 346
swapping 202
switch keyword 51
synchronous interrupts 391–392
system clock 296
systems programming 2, 26
SYSTEMTIME 308–309
system time 294

T

target_arch attribute 227
target_endian attribute 227

INDEX 429
target_env attribute 227
target_family attribute 227
target_has_atomic attribute 227
target_os attribute 227
target platform 369
target_pointer_width

attribute 227
target_vendor attribute 228
task queues,

implementing 358–360
tasks 361
task virtualization 360–363

containers 363
context switches 362
processes 363
reasons for using operating

systems 363
threads 362
WebAssembly 363

TCP (Transmission Control
Protocol) 260–268

converting hostnames to IP
addresses 261–268

port numbers 261
raw 282

TcpStream::connect() 261
TcpStream type 232
Terminated 403
test attribute 228
text output 381–383

creating type that can print
to VGA frame buffer
382–383

enums
controlling in-memory rep-

resentation of 382
reasons for using 382

printing to screen 383
writing colored text to

screen 381
text processing 8–11
thetime_t 307
Thing type 257
third-party code 67–70

adding support for regular
expressions 68–69

generating the third-party
crate documentation
locally 69–70

managing toolchains with
rustup 70

thread::spawn() 14
thread::yield_now()

method 338
thread of execution 361

thread pools 353–360
channels 356
implementing task

queues 358–360
one-way communication

354–356
two-way communication

356–358
ThreadRng 259
threads 330–340, 361

closures 330–331
effect of spawning many

threads 333
effect of spawning some

threads 331–332
reproducing results 335–338
shared variables 338–340
spawning a thread per logical

task 351–353
functional programming

style 351–352
parallel iterators 352–353

spawning threads 331
task virtualization 362
thread::yield_now()

method 338
time and keeping

definitions 296–297
encoding time 297–298
error handling 313
formatting timestamps

299–305
formatting time 301
full command-line

interface 301–303
full project 303–305
refactoring clock code to

support a wider
architecture 300

overview 294–295
representing time zones 298
resolving differences with

NTP 314–321
adjusting local time 316–

318
converting between time

representations that use
different precisions and
epochs 318–319

full code listing 319–321
sending requests and inter-

preting responses
314–316

setting time 305–310
common behavior 306

for operating systems that
use libc 306–308

full code listing 310
on Windows 308–309

sources of time 296
teaching apps to tell

time 298–299
timestamp 301
time_t 298
TimeVal 306
timeval 306
time zones 298
TLB (translated addresses) 203
TLS (Transport Layer

Security) 21–23, 254
goto fail 22–23
Heartbleed 21–22

to_bytes() method 387
todo!() 300
toolchains 70
trait keyword 98
trait objects 190, 256–260

defined 256
function of 256
rpg project 257–260

traits 98–102
Clone trait 130–131
Copy trait 129–131
Display trait 99–102, 273–274
Error trait 274
From trait 276
Path trait 220–222
Read trait 98–99
Write trait

implementing 386–387
reimplementing

panic() 385–386
translated addresses (TLB) 203
translation lookaside buffer 206
Transmission Control Protocol.

See TCP
Transport Layer Security. See TLS
traps 391
tree command 6
tree map 242
trust-dns crate 268
try! macro 270
try_into() method 40
T type 59, 65, 153, 183, 189
turtle variable 345
Type annotations 9
type classes 40
type erasure 272
type keyword 81
type safety 110

INDEX430
U

[u8] type 62, 222, 232, 356
u8 type 38, 80, 382
u16 type 38–39
u32 type 38, 139, 146
UDP (User Datagram

Protocol) 262
unbounded queues 354
unicast 279
unikernel 363
unimplemented!() macro 300
unit type 79
UNIX timestamp 301
unsafe() method 40
unsafe blocks 115, 139, 184,

204, 294, 306, 401, 410, 413,
417

unsafe keyword 88, 139, 417
unsigned long int 298
unwinding 379
.unwrap() method 94, 292
unwrap() method 40, 92, 219,

264, 277
UPDATE case 95
update <key> <value> 224
Update opcodes 264
UpstreamError enum 275
use crate:: 364
use keyword 40, 44, 157
--use-standard timestamp flag 299
usize integers 413
usize type 38, 65, 165, 177, 185,

406
usize value 404–405
U type 153

V

values
duplicating 128–131

using Clone and Copy
130–131

using Copy 129–130

using fewer long-lived
123–126

.values() method 245

.values_mut() variant 245
variable bindings 35
variables

defining 35–36
global variables

signal handling with custom
actions 401–402

using to indicate that shut-
down has been
initiated 402–405

modifying known global
variables 87–91

shared variables 338–340
Vec::new() 81
Vec<Cereal> 13
Vec<Command> 345–346,

360
Vec<Message> 119
Vec<Message> message

store 125
Vec<Operation> 345
Vec<Result> 354
Vec<String> 301
Vec<T> 190, 243, 256, 351–352,

373
Vec<T> fields 263
Vec<T> vector 66
Vec<Task> 354
vectors 63–64, 66–67
Vec<u8> type 62, 80, 267
Vec<Vec<(usize, String)>>

66–67
version flag 367
virtual addresses 204
virtual memory 202–211

having processes scan
their own memory
203–205

overview 202–203
reading from and writing to

process memory 211

scanning address spaces
208–210

translating virtual addresses
to physical addresses
205–207

void function pointer 404
V type 245

W

wall clock time 393
Wasm (WebAssembly) 363
web browsers 26
while loop 173, 336

endless looping 48
overview 47
stopping iteration once a

duration is reached
47–48

window.draw_2d() 199
Windows 308–309

API integer types 308
clock code 309
representing time in 308

words 202
WORD type 308
World struct 195
wrapping data within specialty

types 131–133
WriteProcessMemory() 211
write_str() 386
Write trait

implementing 386–387
reimplementing panic()

385–386
write_volatile() method

376

Z

zero-cost abstractions 27, 98
ZST (zero-sized type) 300,

326

Timothy Samuel McNamara

ISBN: 978-1-61729-455-6

R
ust is the perfect language for systems programming. It
delivers the low-level power of C along with rock-solid
safety features that let you code fearlessly. Ideal for

applications requiring concurrency, Rust programs are com-
pact, readable, and blazingly fast. Best of all, Rust’s famously
smart compiler helps you avoid even subtle coding errors.

Rust in Action is a hands-on guide to systems programming
with Rust. Written for inquisitive programmers, it presents
real-world use cases that go far beyond syntax and structure.
You’ll explore Rust implementations for fi le manipulation,
networking, and kernel-level programming and discover
awesome techniques for parallelism and concurrency. Along
the way, you’ll master Rust’s unique borrow checker model
for memory management without a garbage collector.

What’s Inside
● Elementary to advanced Rust programming
● Practical examples from systems programming
● Command-line, graphical and networked applications

For intermediate programmers. No previous experience with
Rust required.

Tim McNamara uses Rust to build data processing pipelines and
generative art. He is an expert in natural language processing
and data engineering.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Rust IN ACTION

PROGRAMMING/RUST

M A N N I N G

“Th is well-written book will
help you make the most of
what Rust has to off er.”

—Ramnivas Laddad
author of AspectJ in Action

“Engaging writing style and
crisp, easy-to-grasp examples

help the reader get off the
ground in no time.”

—Sumant Tambe, Linkedin

“Rust in Action is
 remarkably polished!”—Christopher Haupt, Swoogo

“Makes it easy to explore
the language and get

 going with it.”
—Federico Hernandez

Meltwater

“I highly recommend this
book to those who want

to learn Rust.”
—Afshin Mehrabani, Etsy

See first page

	Rust in Action
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Other online resources

	about the author
	about the cover illustration
	1 Introducing Rust
	1.1 Where is Rust used?
	1.2 Advocating for Rust at work
	1.3 A taste of the language
	1.3.1 Cheating your way to “Hello, world!”
	1.3.2 Your first Rust program

	1.4 Downloading the book’s source code
	1.5 What does Rust look and feel like?
	1.6 What is Rust?
	1.6.1 Goal of Rust: Safety
	1.6.2 Goal of Rust: Productivity
	1.6.3 Goal of Rust: Control

	1.7 Rust’s big features
	1.7.1 Performance
	1.7.2 Concurrency
	1.7.3 Memory efficiency

	1.8 Downsides of Rust
	1.8.1 Cyclic data structures
	1.8.2 Compile times
	1.8.3 Strictness
	1.8.4 Size of the language
	1.8.5 Hype

	1.9 TLS security case studies
	1.9.1 Heartbleed
	1.9.2 Goto fail;

	1.10 Where does Rust fit best?
	1.10.1 Command-line utilities
	1.10.2 Data processing
	1.10.3 Extending applications
	1.10.4 Resource-constrained environments
	1.10.5 Server-side applications
	1.10.6 Desktop applications
	1.10.7 Desktop
	1.10.8 Mobile
	1.10.9 Web
	1.10.10 Systems programming

	1.11 Rust’s hidden feature: Its community
	1.12 Rust phrase book
	Summary

	Part 1—Rust language distinctives
	2 Language foundations
	2.1 Creating a running program
	2.1.1 Compiling single files with rustc
	2.1.2 Compiling Rust projects with cargo

	2.2 A glance at Rust’s syntax
	2.2.1 Defining variables and calling functions

	2.3 Numbers
	2.3.1 Integers and decimal (floating-point) numbers
	2.3.2 Integers with base 2, base 8, and base 16 notation
	2.3.3 Comparing numbers
	2.3.4 Rational, complex numbers, and other numeric types

	2.4 Flow control
	2.4.1 For: The central pillar of iteration
	2.4.2 Continue: Skipping the rest of the current iteration
	2.4.3 While: Looping until a condition changes its state
	2.4.4 Loop: The basis for Rust’s looping constructs
	2.4.5 Break: Aborting a loop
	2.4.6 If, if else, and else: Conditional branching
	2.4.7 Match: Type-aware pattern matching

	2.5 Defining functions
	2.6 Using references
	2.7 Project: Rendering the Mandelbrot set
	2.8 Advanced function definitions
	2.8.1 Explicit lifetime annotations
	2.8.2 Generic functions

	2.9 Creating grep-lite
	2.10 Making lists of things with arrays, slices, and vectors
	2.10.1 Arrays
	2.10.2 Slices
	2.10.3 Vectors

	2.11 Including third-party code
	2.11.1 Adding support for regular expressions
	2.11.2 Generating the third-party crate documentation locally
	2.11.3 Managing Rust toolchains with rustup

	2.12 Supporting command-line arguments
	2.13 Reading from files
	2.14 Reading from stdin
	Summary

	3 Compound data types
	3.1 Using plain functions to experiment with an API
	3.2 Modeling files with struct
	3.3 Adding methods to a struct with impl
	3.3.1 Simplifying object creation by implementing new()

	3.4 Returning errors
	3.4.1 Modifying a known global variable
	3.4.2 Making use of the Result return type

	3.5 Defining and making use of an enum
	3.5.1 Using an enum to manage internal state

	3.6 Defining common behavior with traits
	3.6.1 Creating a Read trait
	3.6.2 Implementing std::fmt::Display for your own types

	3.7 Exposing your types to the world
	3.7.1 Protecting private data

	3.8 Creating inline documentation for your projects
	3.8.1 Using rustdoc to render docs for a single source file
	3.8.2 Using cargo to render docs for a crate and its dependencies

	Summary

	4 Lifetimes, ownership, and borrowing
	4.1 Implementing a mock CubeSat ground station
	4.1.1 Encountering our first lifetime issue
	4.1.2 Special behavior of primitive types

	4.2 Guide to the figures in this chapter
	4.3 What is an owner? Does it have any responsibilities?
	4.4 How ownership moves
	4.5 Resolving ownership issues
	4.5.1 Use references where full ownership is not required
	4.5.2 Use fewer long-lived values
	4.5.3 Duplicate the value
	4.5.4 Wrap data within specialty types

	Summary

	Part 2—Demystifying systems programming
	5 Data in depth
	5.1 Bit patterns and types
	5.2 Life of an integer
	5.2.1 Understanding endianness

	5.3 Representing decimal numbers
	5.4 Floating-point numbers
	5.4.1 Looking inside an f32
	5.4.2 Isolating the sign bit
	5.4.3 Isolating the exponent
	5.4.4 Isolate the mantissa
	5.4.5 Dissecting a floating-point number

	5.5 Fixed-point number formats
	5.6 Generating random probabilities from random bytes
	5.7 Implementing a CPU to establish that functions are also data
	5.7.1 CPU RIA/1: The Adder
	5.7.2 Full code listing for CPU RIA/1: The Adder
	5.7.3 CPU RIA/2: The Multiplier
	5.7.4 CPU RIA/3: The Caller
	5.7.5 CPU 4: Adding the rest

	Summary

	6 Memory
	6.1 Pointers
	6.2 Exploring Rust’s reference and pointer types
	6.2.1 Raw pointers in Rust
	6.2.2 Rust’s pointer ecosystem
	6.2.3 Smart pointer building blocks

	6.3 Providing programs with memory for their data
	6.3.1 The stack
	6.3.2 The heap
	6.3.3 What is dynamic memory allocation?
	6.3.4 Analyzing the impact of dynamic memory allocation

	6.4 Virtual memory
	6.4.1 Background
	6.4.2 Step 1: Having a process scan its own memory
	6.4.3 Translating virtual addresses to physical addresses
	6.4.4 Step 2: Working with the OS to scan an address space
	6.4.5 Step 3: Reading from and writing to process memory

	Summary

	7 Files and storage
	7.1 What is a file format?
	7.2 Creating your own file formats for data storage
	7.2.1 Writing data to disk with serde and the bincode format

	7.3 Implementing a hexdump clone
	7.4 File operations in Rust
	7.4.1 Opening a file in Rust and controlling its file mode
	7.4.2 Interacting with the filesystem in a type-safe manner with std::fs::Path

	7.5 Implementing a key-value store with a log-structured, append-only storage architecture
	7.5.1 The key-value model
	7.5.2 Introducing actionkv v1: An in-memory key-value store with a command-line interface

	7.6 Actionkv v1: The front-end code
	7.6.1 Tailoring what is compiled with conditional compilation

	7.7 Understanding the core of actionkv: The libactionkv crate
	7.7.1 Initializing the ActionKV struct
	7.7.2 Processing an individual record
	7.7.3 Writing multi-byte binary data to disk in a guaranteed byte order
	7.7.4 Validating I/O errors with checksums
	7.7.5 Inserting a new key-value pair into an existing database
	7.7.6 The full code listing for actionkv
	7.7.7 Working with keys and values with HashMap and BTreeMap
	7.7.8 Creating a HashMap and populating it with values
	7.7.9 Retrieving values from HashMap and BTreeMap
	7.7.10 How to decide between HashMap and BTreeMap
	7.7.11 Adding a database index to actionkv v2.0

	Summary

	8 Networking
	8.1 All of networking in seven paragraphs
	8.2 Generating an HTTP GET request with reqwest
	8.3 Trait objects
	8.3.1 What do trait objects enable?
	8.3.2 What is a trait object?
	8.3.3 Creating a tiny role-playing game: The rpg project

	8.4 TCP
	8.4.1 What is a port number?
	8.4.2 Converting a hostname to an IP address

	8.5 Ergonomic error handling for libraries
	8.5.1 Issue: Unable to return multiple error types
	8.5.2 Wrapping downstream errors by defining our own error type
	8.5.3 Cheating with unwrap() and expect()

	8.6 MAC addresses
	8.6.1 Generating MAC addresses

	8.7 Implementing state machines with Rust’s enums
	8.8 Raw TCP
	8.9 Creating a virtual networking device
	8.10 “Raw” HTTP
	Summary

	9 Time and timekeeping
	9.1 Background
	9.2 Sources of time
	9.3 Definitions
	9.4 Encoding time
	9.4.1 Representing time zones

	9.5 clock v0.1.0: Teaching an application how to tell the time
	9.6 clock v0.1.1: Formatting timestamps to comply with ISO 8601 and email standards
	9.6.1 Refactoring the clock v0.1.0 code to support a wider architecture
	9.6.2 Formatting the time
	9.6.3 Providing a full command-line interface
	9.6.4 clock v0.1.1: Full project

	9.7 clock v0.1.2: Setting the time
	9.7.1 Common behavior
	9.7.2 Setting the time for operating systems that use libc
	9.7.3 Setting the time on MS Windows
	9.7.4 clock v0.1.2: The full code listing

	9.8 Improving error handling
	9.9 clock v0.1.3: Resolving differences between clocks with the Network Time Protocol (NTP)
	9.9.1 Sending NTP requests and interpreting responses
	9.9.2 Adjusting the local time as a result of the server’s response
	9.9.3 Converting between time representations that use different precisions and epochs
	9.9.4 clock v0.1.3: The full code listing

	Summary

	10 Processes, threads, and containers
	10.1 Anonymous functions
	10.2 Spawning threads
	10.2.1 Introduction to closures
	10.2.2 Spawning a thread
	10.2.3 Effect of spawning a few threads
	10.2.4 Effect of spawning many threads
	10.2.5 Reproducing the results
	10.2.6 Shared variables

	10.3 Differences between closures and functions
	10.4 Procedurally generated avatars from a multithreaded parser and code generator
	10.4.1 How to run render-hex and its intended output
	10.4.2 Single-threaded render-hex overview
	10.4.3 Spawning a thread per logical task
	10.4.4 Using a thread pool and task queue

	10.5 Concurrency and task virtualization
	10.5.1 Threads
	10.5.2 What is a context switch?
	10.5.3 Processes
	10.5.4 WebAssembly
	10.5.5 Containers
	10.5.6 Why use an operating system (OS) at all?

	Summary

	11 Kernel
	11.1 A fledgling operating system (FledgeOS)
	11.1.1 Setting up a development environment for developing an OS kernel
	11.1.2 Verifying the development environment

	11.2 Fledgeos-0: Getting something working
	11.2.1 First boot
	11.2.2 Compilation instructions
	11.2.3 Source code listings
	11.2.4 Panic handling
	11.2.5 Writing to the screen with VGA-compatible text mode
	11.2.6 _start(): The main() function for FledgeOS

	11.3 fledgeos-1: Avoiding a busy loop
	11.3.1 Being power conscious by interacting with the CPU directly
	11.3.2 fledgeos-1 source code

	11.4 fledgeos-2: Custom exception handling
	11.4.1 Handling exceptions properly, almost
	11.4.2 fledgeos-2 source code

	11.5 fledgeos-3: Text output
	11.5.1 Writing colored text to the screen
	11.5.2 Controlling the in-memory representation of enums
	11.5.3 Why use enums?
	11.5.4 Creating a type that can print to the VGA frame buffer
	11.5.5 Printing to the screen
	11.5.6 fledgeos-3 source code

	11.6 fledgeos-4: Custom panic handling
	11.6.1 Implementing a panic handler that reports the error to the user
	11.6.2 Reimplementing panic() by making use of core::fmt::Write
	11.6.3 Implementing core::fmt::Write
	11.6.4 fledge-4 source code

	Summary

	12 Signals, interrupts, and exceptions
	12.1 Glossary
	12.1.1 Signals vs. interrupts

	12.2 How interrupts affect applications
	12.3 Software interrupts
	12.4 Hardware interrupts
	12.5 Signal handling
	12.5.1 Default behavior
	12.5.2 Suspend and resume a program’s operation
	12.5.3 Listing all signals supported by the OS

	12.6 Handling signals with custom actions
	12.6.1 Global variables in Rust
	12.6.2 Using a global variable to indicate that shutdown has been initiated

	12.7 Sending application-defined signals
	12.7.1 Understanding function pointers and their syntax

	12.8 Ignoring signals
	12.9 Shutting down from deeply nested call stacks
	12.9.1 Introducing the sjlj project
	12.9.2 Setting up intrinsics in a program
	12.9.3 Casting a pointer to another type
	12.9.4 Compiling the sjlj project
	12.9.5 sjlj project source code

	12.10 A note on applying these techniques to platforms without signals
	12.11 Revising exceptions
	Summary

	index
	Symbol
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020005B041D04300020043E0441043D043E043204350020044104420438043B044F00200027005000720069006E00650072006700790020005000610067006500730027005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

